ebook img

Armstrong, Michael J. and Blackwelder, Mark and Bollman, Andrew and Ross, Christine and ... PDF

270 Pages·2015·12.06 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Armstrong, Michael J. and Blackwelder, Mark and Bollman, Andrew and Ross, Christine and ...

NASA/CR—2015-218440 EDNS04000038188/002 Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid Final Report Michael J. Armstrong and Mark Blackwelder Rolls-Royce North American Technologies, Inc. (LibertyWorks), Indianapolis, Indiana Andrew Bollman and Christine Ross Rolls-Royce Corporation, Indianapolis, Indiana Angela Campbell Georgia Institute of Technology, Atlanta, Georgia Catherine Jones and Patrick Norman University of Strathclyde, Glasgow, Scotland, United Kingdom July 2015 NASA STI Program . . . in Profile Since its founding, NASA has been dedicated • CONTRACTOR REPORT. Scientific and to the advancement of aeronautics and space science. technical findings by NASA-sponsored The NASA Scientific and Technical Information (STI) contractors and grantees. Program plays a key part in helping NASA maintain • CONFERENCE PUBLICATION. Collected this important role. papers from scientific and technical conferences, symposia, seminars, or other The NASA STI Program operates under the auspices meetings sponsored or co-sponsored by NASA. of the Agency Chief Information Officer. It collects, organizes, provides for archiving, and disseminates • SPECIAL PUBLICATION. Scientific, NASA’s STI. The NASA STI Program provides access technical, or historical information from to the NASA Technical Report Server—Registered NASA programs, projects, and missions, often (NTRS Reg) and NASA Technical Report Server— concerned with subjects having substantial Public (NTRS) thus providing one of the largest public interest. collections of aeronautical and space science STI in the world. Results are published in both non-NASA • TECHNICAL TRANSLATION. English- channels and by NASA in the NASA STI Report language translations of foreign scientific and Series, which includes the following report types: technical material pertinent to NASA’s mission. • TECHNICAL PUBLICATION. Reports of For more information about the NASA STI completed research or a major significant phase program, see the following: of research that present the results of NASA • Access the NASA STI program home page at programs and include extensive data or theoretical http://www.sti.nasa.gov analysis. Includes compilations of significant scientific and technical data and information • E-mail your question to [email protected] deemed to be of continuing reference value. NASA counter-part of peer-reviewed formal • Fax your question to the NASA STI professional papers, but has less stringent Information Desk at 757-864-6500 limitations on manuscript length and extent of graphic presentations. • Telephone the NASA STI Information Desk at 757-864-9658 • TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of • Write to: specialized interest, e.g., “quick-release” reports, NASA STI Program working papers, and bibliographies that contain Mail Stop 148 minimal annotation. Does not contain extensive NASA Langley Research Center analysis. Hampton, VA 23681-2199 NASA/CR—2015-218440 EDNS04000038188/002 Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid Final Report Michael J. Armstrong and Mark Blackwelder Rolls-Royce North American Technologies, Inc. (LibertyWorks), Indianapolis, Indiana Andrew Bollman and Christine Ross Rolls-Royce Corporation, Indianapolis, Indiana Angela Campbell Georgia Institute of Technology, Atlanta, Georgia Catherine Jones and Patrick Norman University of Strathclyde, Glasgow, Scotland, United Kingdom Prepared under Contract NNC13TA77T National Aeronautics and Space Administration Glenn Research Center Cleveland, Ohio 44135 July 2015 Trade names and trademarks are used in this report for identification only. Their usage does not constitute an official endorsement, either expressed or implied, by the National Aeronautics and Space Administration. Level of Review: This material has been technically reviewed by NASA technical management OR expert reviewer(s). Available from NASA STI Program National Technical Information Service Mail Stop 148 5285 Port Royal Road NASA Langley Research Center Springfield, VA 22161 Hampton, VA 23681-2199 703-605-6000 This report is available in electronic form at http://www.sti.nasa.gov/ and http://ntrs.nasa.gov/ Contents 1.0 Introduction ........................................................................................................................................... 1 1.1 TeDP Electrical System ................................................................................................................ 1 1.2 A Review of Current Voltage Standards ....................................................................................... 2 1.2.1 Grid Codes ........................................................................................................................ 4 1.2.2 Maritime Power Systems .................................................................................................. 8 1.2.3 Current Aircraft Voltage Standards ................................................................................ 11 1.3 Challenging in Creating DC Propulsion Standards ..................................................................... 12 1.4 TeDP Electrical System Voltage Standards ................................................................................ 13 1.4.1 Regulation, Protection, and Recovery: A Design/Engineering Perspective ................... 13 1.4.2 Operational Voltage Limits Category Definitions .......................................................... 14 1.4.3 Selection of the Optimal Operating Voltage ................................................................... 16 1.5 Introduction Summary ................................................................................................................ 19 2.0 Architecture Selection ......................................................................................................................... 20 2.1 Architecture Candidates .............................................................................................................. 20 2.1.1 Concept 1: Baseline Architecture.................................................................................... 20 2.1.2 Concept 2: Inner Bus Tie Concept .................................................................................. 21 2.1.3 Concept 3: 3-Bus Multifeeder Concept ........................................................................... 21 2.1.4 Concept 4: Cross-Redundant Multifeeder Concept ........................................................ 21 2.1.5 Concept 5: 4-Bus Inner Bus Tie Multifeeder Concept .................................................... 22 2.2 Architecture Evaluation and Selection ........................................................................................ 24 2.3 Weight Sensitivity and Deliverable Objectives .......................................................................... 25 2.4 Overview and Naming Convention for Selected TeDP Architecture ......................................... 27 3.0 Terrestrial Systems Benchmarking ..................................................................................................... 29 3.1 Power Transmission Superconducting Cable Installations ......................................................... 29 3.2 Future DC Power Transmission Installations ............................................................................. 30 3.3 Superconducting Fault-Current Limiter Installations and Prototypes......................................... 31 3.4 High Power Normally Conducting Solid-State Switchgear ........................................................ 31 3.5 Cryogenic Semiconductors ......................................................................................................... 32 3.6 Cryogenic Power Converter Prototypes ...................................................................................... 34 3.7 Superconducting Electric Machine Prototypes ........................................................................... 35 3.8 Study Voltage Range Conclusion ............................................................................................... 35 4.0 DC Protection Devices ........................................................................................................................ 37 4.1 Introduction ................................................................................................................................. 37 4.2 DC Electromechanical Circuit Breakers ..................................................................................... 38 4.2.1 Conventional DC EMCBs ............................................................................................... 38 4.2.2 EMCBs Applied to Superconducting Systems ............................................................... 39 4.3 Hybrid Circuit Breakers .............................................................................................................. 42 4.4 Solid-State Circuit Breakers........................................................................................................ 45 4.5 Summary ..................................................................................................................................... 47 5.0 Component Sensitivities and Sensitivity Modeling ............................................................................ 48 5.1 Component Sensitivity Overview ............................................................................................... 48 5.2 Rectifier and Inverter .................................................................................................................. 51 5.2.1 Model Overview ............................................................................................................. 52 5.2.2 Source-Side Converters ................................................................................................... 54 5.2.3 Source-Side Converters Trends....................................................................................... 67 5.2.4 Load-Side Converters ..................................................................................................... 73 5.2.5 Load-Side Converter Trends ........................................................................................... 75 5.3 Cables Model Overview.............................................................................................................. 80 5.3.1 Cable Layout ................................................................................................................... 80 NASA/CR—2015-218440 iii 5.3.2 Monopolar, Bipolar, Redundancy and Three Phase AC ................................................. 81 5.3.3 Superconducting Material ............................................................................................... 82 5.3.4 Applied Field .................................................................................................................. 83 5.3.5 Cryostat ........................................................................................................................... 83 5.3.6 Cooling ............................................................................................................................ 85 5.3.7 Losses .............................................................................................................................. 85 5.3.8 AC Losses ....................................................................................................................... 86 5.3.9 Dielectric ......................................................................................................................... 86 5.3.10 Mass and Efficiency Trends ............................................................................................ 87 5.3.11 DC Cable ......................................................................................................................... 89 5.3.12 AC Cable ......................................................................................................................... 90 5.3.13 Cable Losses ................................................................................................................... 91 5.4 Superconducting Magnetic Energy Storage ................................................................................ 92 5.4.1 Parameter Diagram ......................................................................................................... 93 5.4.2 Sizing Equations ............................................................................................................. 94 5.4.3 Power Electronics ........................................................................................................... 97 5.4.4 Cryocooling Weight Calculations ................................................................................... 98 5.4.5 SMES Sensitivity Study Parameters and Assumption Overview ................................... 98 5.4.6 Mass and Efficiency Trends ............................................................................................ 99 5.5 Circuit Breakers ........................................................................................................................ 105 5.5.1 Model Overview ........................................................................................................... 106 5.5.2 Mass and Efficiency Trends .......................................................................................... 108 5.6 Superconducting Fault Current Limiters ................................................................................... 116 5.6.1 Modeling Approach ...................................................................................................... 116 5.6.2 Geometry and Winding ................................................................................................. 117 5.6.3 Parameter Diagram ....................................................................................................... 119 5.6.4 Governing Equations..................................................................................................... 120 5.6.5 Quench Modeling .......................................................................................................... 120 5.6.6 Quench Cooling ............................................................................................................ 121 5.6.7 Induction Equations ...................................................................................................... 122 5.6.8 Mass Equations ............................................................................................................. 124 5.6.9 Assumptions Overview ................................................................................................. 124 5.6.10 Geometry Sensitivity..................................................................................................... 129 5.6.11 Efficiency Trends .......................................................................................................... 131 5.7 Generators ................................................................................................................................. 134 5.8 Cryogenic System ..................................................................................................................... 134 5.9 Component Sensitivity Modeling Summary ............................................................................. 134 6.0 Narrowed DC Voltage Range............................................................................................................ 135 6.1 Introduction ............................................................................................................................... 135 6.2 Architecture Assumptions ......................................................................................................... 135 6.3 Electrical System Mass Sensitivity to Voltage ......................................................................... 137 6.4 Electrical System Cooling Requirements Sensitivity to Voltage .............................................. 139 6.5 IGBT and Diode Switching and Conduction Losses ................................................................ 142 6.6 Cryocooler Mass ....................................................................................................................... 142 6.7 Narrowed Voltage Range .......................................................................................................... 144 7.0 GT Dynamic Model .......................................................................................................................... 147 7.1 Introduction ............................................................................................................................... 147 7.2 Superconducting Fault Current Limiter .................................................................................... 147 7.2.1 SFCL Modeling Overview ............................................................................................ 147 7.2.2 SFCL SimPowerSystems Model ................................................................................... 148 7.2.3 SFCL State-Space Model .............................................................................................. 153 NASA/CR—2015-218440 iv 7.3 Solid-State Circuit Breaker ....................................................................................................... 154 7.3.1 SSCB Modeling Overview ............................................................................................ 155 7.3.2 SSCB SimPowerSystems Model .................................................................................. 157 7.4 Energy Storage Model (SMES) ................................................................................................ 159 7.5 Power Converter Models .......................................................................................................... 161 7.5.1 Rectifiers ....................................................................................................................... 162 7.5.2 Inverters ........................................................................................................................ 172 7.6 System Modeling ...................................................................................................................... 177 7.6.1 Single Motor Model ...................................................................................................... 178 7.6.2 Fault Isolation Model .................................................................................................... 182 7.6.3 Nominal Recovery Model ............................................................................................. 182 7.6.4 Failure Scenarios ........................................................................................................... 182 7.6.5 Running the Models ...................................................................................................... 195 7.7 Summary and Future Studies .................................................................................................... 196 8.0 Conclusions ....................................................................................................................................... 197 8.1 Power Electronics ..................................................................................................................... 197 8.2 Protection .................................................................................................................................. 198 8.3 Energy Storage .......................................................................................................................... 198 8.4 Distribution ............................................................................................................................... 199 8.5 Dynamic Modeling ................................................................................................................... 199 Appendix A.—Acronyms and Abbreviations ........................................................................................... 201 Appendix B.—IGBT Data ........................................................................................................................ 203 Appendix C.—Dynamic Models .............................................................................................................. 205 Appendix D.—Strathclyde Report ............................................................................................................ 213 References ................................................................................................................................................. 252 NASA/CR—2015-218440 v Architecture, Voltage, and Components for a Turboelectric Distributed Propulsion Electric Grid Final Report Michael J. Armstrong and Mark Blackwelder Rolls-Royce North American Technologies, Inc. (LibertyWorks) Indianapolis, Indiana 46207 Andrew Bollman and Christine Ross Rolls-Royce Corporation Indianapolis, Indiana 46206 Angela Campbell Georgia Institute of Technology Atlanta, Georgia 30332 Catherine Jones and Patrick Norman University of Strathclyde Glasgow, Scotland, G1 1XQ, United Kingdom 1.0 Introduction 1.1 TeDP Electrical System The development of a wholly superconducting turboelectric distributed propulsion system presents unique opportunities for the aerospace industry. However, this transition from normally conducting systems to superconducting systems significantly increases the equipment complexity necessary to manage the electrical power systems. Due to the low technology readiness level (TRL) nature of all components and systems, current Turboelectric Distributed Propulsion (TeDP) technology developments are driven by an ambiguous set of system-level electrical integration standards for an airborne microgrid system (Figure 1). While multiple decades’ worth of advancements are still required for concept realization, current system-level studies are necessary to focus the technology development, target specific technological shortcomings, and enable accurate prediction of concept feasibility and viability. An understanding of the performance sensitivity to operating voltages and an early definition of advantageous voltage regulation standards for unconventional airborne microgrids will allow for more accurate targeting of technology development. Propulsive power-rated microgrid systems necessitate the introduction of new aircraft distribution system voltage standards. All protection, distribution, control, power conversion, generation, and cryocooling equipment are affected by voltage regulation standards. Information on the desired operating voltage and voltage regulation is required to determine nominal and maximum currents for sizing distribution and fault isolation equipment, developing machine topologies and machine controls, and the physical attributes of all component shielding and insulation. Voltage impacts many components and system performance. NASA/CR—2015-218440 1 Figure 1.—Rolls-Royce TeDP System Architecture Concept. Issues that must be considered for higher voltage operation are the following: • Maximum and steady-state current ratings • Fault current interruption for fault isolation and protection • Partial discharge and corona protection • Dielectric insulation life • Safety procedures for testing, manufacturing, and maintenance To assess the feasibility of unconventional airborne N+2/3 microgrid concepts more accurately, tools and processes are necessary to estimate and govern the development of appropriate voltage regulation standards for these unconventional concepts. An integrated system-level process for identifying the desired voltage standards would allow for more accurate prediction of electrical system weight and volumes, overall system reliability, and safety of technology concept. This influences the vehicle-level feasibilities assessments, highlighting technology gaps where increased development is needed (protection equipment). Once advantageous sets of standards are identified, these standards can be used to assist in informing electrical technology development relating to expected systems interactions and operational constraints. A holistic approach to defining the appropriate standards is necessary to guide future technology developments. Most current superconducting technology developments are subject to constraints imposed by interfacing with normally conducting terrestrial systems. However, because the NASA N3-X microgrid is wholly superconducting, many of the driving connection constraints are removed, and the operating standards for a wholly superconducting system can be tailored to capture maximum benefit to the entire system. Additionally, because this system must be airworthy and flight critical, operating standards must be defined that lend specifically to aircraft environmental, safety, and performance objectives. 1.2 A Review of Current Voltage Standards Terrestrial systems have adopted multi-kilovolt (kV) standards for electrical power distribution. However, the aerospace community typically operates well under the kV level. The highest accepted power distribution voltage for conventional transport aircraft is ±270 Vdc. These common voltage practices reflect the current aircraft electrical power systems paradigm. While increased voltages would NASA/CR—2015-218440 2

Description:
systems to medium voltage power grids in accordance with DIN EN 50160 œ —Voltage Characteristics of electricity . power system designer must gather and analyze the entire system to ensure that the ABS regulations will SimPowerSystems toolbox in MATLAB Simulink (The MathWorks, Inc.).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.