ebook img

Arithmetical Functions PDF

387 Pages·1994·4.1 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Arithmetical Functions

131 Algebraic, extrcmal & metric combinatorics, M-M. DEZA, P FRANKL & I.G. ROSENBERG (eds) 132 Whitehead groups of finite groups, ROBERT OLIVER 133 Linear algebraic monoids, MOHAN S. PUTCHA 134 Number theory and dynamical systems, M. DODSON & J. VICKERS (eds) 135 Operator algebras and applications, 1, D. EVANS & M. TAKESAKI (eds) 136 Operator algebras and applications, 2, D. EVANS & M.'i'AKESAKI (eds) 137 Analysis at Urbana, I, E. BERKSON, T. PECK, & J. UHL (eds) 138 Analysis at Urbana, II, E. BERKSON, T. PECK, & J. UIIL (eds) 139 Advances in homotopy theory, S. SALAMON, B STEER & W. SUTHERLAND (eds) 140 Geometric aspects of Banach spaces, E M. PEINADOR and A. RODES (eds) 141 Surveys in combinatorics 1989, J. SIEMONS (ed) 142 The geometry of jet bundles, D J. SAUNDERS 143 The ergodic theory of discrete groups, PETER J. NICIHOLLS 144 Introduction to uniform spaces, I.M. JAMES 145 Ilomological questions in local algebra, JAN R ST'ROOKER 146 Cohen-Macaulay modules over Cohcn-Macaulay rings, Y. YOSHINO 147 Continuous and discrete modules, S.H. MOIIAMED & B J. MULLER 148 Helices and vector bundles, A N. RUDAKOV et at 149 Solitons nonlinear evolution equations & inverse scattering, M. ABLOWI'IZ & P. CI.ARKSON 150 Geometry of low-dimensional manifolds 1, S. DONALDSON & C.B. THOMAS (eds) 151 Geometry of low-dimensional manifolds 2, S. DONALDSON & C B. THOMAS (eds) 152 Oligomorphic permutation groups, P. CAMERON 153 L-functions and arithmetic, J. COATES & M.J. TAYLOR (eds) 154 Number theory and cryptography, J. LOXTON (ed) 155 Classification theories of polarized varieties, TAKAO I.1JJITA 156 Twistors in mathematics and physics, 'I'.N. BAILEY & R J. BASTON (eds) 157 Analytic pro-p groups, J.D. DIXON, M.P.F DU SAUTOY, A. MANN & D. SEGAL 158 Geometry of Banach spaces, P F.X. MU)LLER & W. SCIIACIIERMAYER (eds) 159 Groups St Andrews 1989 volume 1, C.M CAMPBELL & E F. ROBERTSON (eds) 160 Groups St Andrews 1989 volume 2, C M CAMPBELL. & E F. ROBERTSON (eds) 161 Lectures on block theory, BURKHARI) KULSHAMMER 162 Harmonic analysis and representation theory for groups acting on homogeneous trees, A. FIGA-T'ALAMANCA & C. NEBBIA 163 Topics in varieties of group representations, S.M. VOVSI 164 Quasi-symmetric designs, M.S. SitRIKANDE & S.S. SANE 165 Groups, combinatoncs & geometry, M.W. LIEBECK & J. SAXL (eds) 166 Surveys in combinatorics, 1991, A.D. KEEDWELL (ed) 167 Stochastic analysis, M.T. BARLOW & N.H. BINGHAM (eds) 168 Representations of algebras, H. TACHIKAWA & S. BRENNER (eds) 169 Boolean function complexity, M.S. PATERSON (ed) 170 Manifolds with singularities and the Adams-Novikov spectral sequence, B. BOTVINNIK 171 Squares, A R. RAJWADE 172 Algebraic varieties, GEORGE R. KEMPF 173 Discrete groups and geometry, W.J. HARVEY & C. MACI.ACIILAN (eds) 174 Lectures on mechanics, J.E. MARSDEN 175 Adams memorial symposium on algebraic topology 1, N. RAY & G. WALKER (eds) 176 Adams memorial symposium on algebraic topology 2, N RAY & G. WALKER (eds) 177 Applications of categories in computer science, M.P FOURMAN, P.T. JOHNSTONE, & A.M. PITT'S (eds) 178 Lower K- and L-theory, A RANICKI 179 Complex projective geometry, G. ELLINGSRUD, C. PFSKINE, G. SACCHIERO & S.A STROMME (eds) 180 Lectures on crgodic theory and Pcsin theory on compact manifolds, M POLLICOTT 181 Geometric group theory I, G A. NIBLO & M A ROLLER (eds) 182 Geometric group theory II, G.A. NIBLO & M A. ROLLER (cds) 183 Shintani zeta functions, A YUKIE 184 Arithmetical functions, W. SCHWARZ & J SPILKER 185 Representations of solvable groups, O. MANZ & T.R. WOLF 186 Complexity: knots, colourings and counting, D J.A. WELSH 187 Surveys in combinatorics, 1993, K. WALKER (ed) 189 Locally presentable and accessible categories, J. ADAMEK & J. ROSICKY 190 Polynomial invariants of finite groups, DJ BENSON 191 Finite geometry and combinatorics, F DE CLERCK el at 192 Symplectic geometry, D. SALAMON (cd) 197 Two-dimensional homotopy and combinatorial group theory, C. HOG-ANGELONI W. METZLER & A J. SIERADSKI (eds) 198 The algebraic characterization of geometric 4-manifolds, J.A. HILLMAN London Mathematical Society Lecture Note Series. 184 Arithmetical Functions An Introduction to Elementary and Analytic Properties of Arithmetic Functions and to some of their Almost-Periodic Properties Wolfgang Schwarz Johann Wolfgang Goethe-Universitt t, Frankfurt am Main Jurgen Spilker Freiburg im Breisgau CAMBRIDGE UNIVERSITY PRESS Published by the Press Syndicate of the University of Cambridge The Pitt Building, Trumpington Street, Cambridge CB2 1RP 40 West 20th Street, New York, NY 10011-4211, USA 10 Stamford Road, Oakleigh, Melbourne 3166, Australia © Cambridge University Press 1994 First published 1994 Printed in Great Britain at the University Press, Cambridge British Library cataloguing in publication data available Library of Congress cataloguing in publication data available ISBN 0 521 42725 8 To OUR Wives DORIS and HELGA Contents .. preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . xv .. Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii Chapter I Tools from Number Theory . . . . . . . . . . . . 1 I.I. Partial Summation . . . . . . . . . . . . . . . . . . . . . 2 1.2. Arithmetical Functions, Convolution, Mdbius Inversion Formula 4 1.3. Periodic Functions, Even Functions, Ramanujan Sums 15 1.4. The Turin-Kubillus Inequality . . . . . . . . . . . . . . 19 I.S. Generating Functions, Dirichlet Series . . . . . . . . . . 25 1.6. Some Results on Prime Numbers . . . . . . . . . . . . . 31 1.7. Characters, L-Functions, Primes in Arithmetic Progressions 3S 1.8. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Photographs 43 . . . . . . . . . . . . . . . . . . . . . . . . . . Chapter II Mean-Value Theorems and Multiplicative Functions, I 4S 11.1. Motivation 46 . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2. Elementary Mean-Value Theorems (Wlntner, Axer) 49 . . 11.3. Estimates for Sums over Multiplicative Functions (Rankin's Trick) . . . . . . . . . . . . . . . . . . . . . . . . . 56 11.4. Wirsing's Mean-Value Theorem for Sums over Non-Negative Multiplicative Functions . . . . . . . . . . . . . . . 65 II.S. The Theorem of G. Halasz on Mean-Values of Complex- Valued Multiplicative Functions . . . . . . . . . . 76 11.6. The Theorem of Daboussi and Delange on the Fourier-Coef- ficients of Multiplicative Functions 78 . . . . . . . 11.7. Application of the Daboussi-Delange Theorem to a Problem of Uniform Distribution . . . . . . . . . . . . . . . 81 11.8. The Theorem of Saffari and Daboussi, I. 82 . . . . . . . . . 11.9. Daboussi's Elementary Proof of the Prime Number Theorem 85 11.10. Mohan Nair's Elementary Method in Prime Number Theory 91 - vii - Contents 11.11. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 93 Chapter III Related Arithmetical Functions . . . . . . . . . . 97 111.1. Introduction, Motivation 98 . . . . . . . . . . . . . . . . . 111.2. Main Results . . . . . . . . . . . . . . . . . . . . . . . . 101 111.3. Lemmata, Proof of Theorem 2.3 104 . . . . . . . . . . . . 111.4. Applications . . . . . . . . . . . . . . . . . . . . . . . . . 110 III.S. On a Theorem of L. Lucht . . . . . . . . . . . . . . . . 115 111.6. The Theorem of Saffari and Daboussi, II . . . . . . . . 117 111.7. Application to Almost-Periodic Functions . . . . . . . 118 111.8. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 Chapter IV Uniformly Almost-Periodic Arithmetical Functions . . . . . . . . . . . . . . . . . . . . . . . 123 IV.1. Even and Periodic Arithmetical Functions . . . . . . . 124 IV.2. Simple Properties . . . . . . . . . . . . . . . . . . . . . 133 IV.3. Limit Distributions . . . . . . . . . . . . . . . . . . . . 139 IV.4. Gelfand's Theory: Maximal Ideal Spaces . . . . . . . 142 IV.4.A. The maximal ideal space 0B of ,$U 142 IV.4.B. The maximal ideal space 0., of Bu 147 IV.S. Application of Tietze's Extension Theorem . . . . . 155 IV.6. Integration of Uniformly Almost-Even Functions IS6 . . IV.7. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Chapter V Ramanujan Expansions of Functions in 8" . . . . 165 V.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 166 V.2. Equivalence of Theorems 1.2, 1.3, 1.4, 1.S . . . . . . . . 168 V.3. Some Lemmata . . . . . . . . . . . . . . . . . . . . . . 171 V.4. Proof of Theorem 1.5 . . . . . . . . . . . . . . . . . . . 175 V.S. Proof of Lemmas 3.4 and 3.5 . . . . . . . . . . . . . . . 178 V.6. Exercises 184 . . . . . . . . . . . . . . . . . . . . . . . . . . Chapter VI Almost-Periodic and Almost-Even Arithmetical Functions . . . . . . . . . .. . . . . . . . ... . . . . 185 VI.1. Besicovich Norm, Spaces of Almost Periodic Functions 186 VI.2. Some Properties of Spaces of q-Almost-Periodic Functions 197 - viii - Contents VI.3. Parseval's Equation 206 . . . . . . . . . . . . . . . . . . . VI.4. A Second Proof for Parseval's Formula 208 . . . . . . . VI.S. An Approximation for Functions in S1 . . . . . . . 210 VI.6. Limit Distributions of Arithmetical Functions . . . 212 VI.7. Arithmetical Applications . . . . . . . . . . . . . . 21S VI.7. A. Mean-Values, Limit Distributions . . . . 215 VI.7.B. Applications to Power-Series with Multiplicative Coefficients . . . . . . . . . . . . . . . . . 218 VI.7.C. Power Series Bounded on the Negative Real Axis 221 VI.8. A 2 q - Criterion . . . . . . . . . . . . . . . . . . . . . . 224 VI.9. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . 229 Photographs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231 Chapter VII The Theorems of Elliott and Daboussi 233 VII.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 234 VII.2. Multiplicative Functions with Mean-Value M(f) * 0, Satis- fying II f 112 < CO . . . . . . . . . . . . . . . . . . . . 239 21 VII.3. Criteria for Multiplicative Functions to Belong to 243 VII.4. Criteria for Multiplicative Functions to Belong to 2q 251 VII.S. Multiplicative Functions in Aq with Mean-Value M(f) $ 0 257 VII.6. Multiplicative Functions in ,4" with Non-Void Spectrum 261 VII.7. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 266 Chapter VIII Ramanujan Expansions 269 . . . . . . . . . . . . . . . VIII.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 270 VIII.2. Wintner's Criterion . . . . . . . . . . . . . . . . . . . . 271 VIII.3. Mean-Value Formulae for Multiplicative Functions 276 VIII.4. Formulae for Ramanujan Coefficients 280 . . . . . . . . VIII.S. Pointwise Convergence of Ramanujan Expansions 284 VIII.6. Still Another Proof for Parseval's Equation 289 . . . . VIII.7. Additive Functions . . . . . . . . . . . . . . . . . . . . 291 VIII. 8. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 291 Contents Chapter IX Mean-Value Theorems and Multiplicative Functions, II 293 IX.1. On Wirsing's Mean-Value Theorem 294 . . . . . . . . . . IX.2. Proof of Theorem 1.4 . . . . . . . . . . . . . . . . . 298 IX.3. The Mean-Value Theorem of Gabor Halasz 303 . . . . IX.4. Proof of Proposition 3.3 . . . . . . . . . . . . . . . . . 309 IX.S. Exercises . . . . . . . . . . . . . . . . . . . . . . . . . 311 Photographs . . . . . . . . . . . . . . . . . . . . . . . . . . . 313 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315 A.I. The Stone-Weierstrass Theorem, Tietze's Theorem . . 315 A.2. Elementary Theory of Hilbert Space . . . . . . . . . . 316 A.3. Integration . . . . . . . . . . . . . . . . . . . . . . . 319 A.4. Tauberian Theorems (Hardy-Littlewood-Karamata, 321 Landau-Ikehara) . . . . . . . . . . . . . . . A.S. The Continuity Theorem for Characteristic Functions 323 A.6. Gelfand's Theory of Commutative Banach Algebras 325 A.7. Infinite Products . . . . . . . . . . . . . . . . . . . 327 A. 8. The Large Sieve . . . . . . . . . . . . . . . . . . . 329 A.9. Dirichlet Series . . . . . . . . . . . . . . . . . . . . 331 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 Author Index 353 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Subject Index 357 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Photographs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36S Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . 367

Description:
The theme of this book is the characterization of certain multiplicative and additive arithmetical functions by combining methods from number theory with some simple ideas from functional and harmonic analysis. The authors achieve this goal by considering convolutions of arithmetical functions, elem
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.