Harish-Chandra Research Institute Lecture Notes - 1 Arithmetical Aspects of the Large Sieve Inequality Arithmetical Aspects of the Large Sieve Inequality Olivier Rarnan§ CNRS, Universite Lille 1 France With the Collaboration of D. S. Ramana Harish-Chandra Research Institute Allahabad, India 11:0@fo9Hl INDUSTAN U I!LI UB OOK AGENCY Published by Hindustan Book Agency (India) P 19 Green Park Extension New Delhi 110016 India email: [email protected] http://www.hindbook.com Copyright © 2009 by Hindustan Book Agency (India) No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any informa tion storage and retrieval system, without written permission from the copyright owner, who has also the sole right to grant licences for translation into other languages and publication thereof. All export rights for this edition vest exclusively with Hindustan Book Agency (India). Unauthorized export is a violation of Copyright Law and is subject to legal action. Produced from camera ready copy supplied by the Authors. ISBN 978-81-85931-90-6 ISBN 978-93-86279-40-8 (eBook) DOI 10.1007/978-93-86279-40-8 Preface These lectures were given in February 2005 while I was a guest of the Harish-Chandra Research Institute, and the bulk of these notes was written while I was staying there. Though this course was intended for people having some background in analytic number theory, efforts have been made to restrict the pre requisites to a minimum. As an effect, most of these notes can be read with no prior knowledge in the area, except for some applications which require the prime number Theorem for arithmetic progressions and, in some places, the Bombieri-Vinogradov Theorem. I wish to thank the Harish-Chandra Research Institute for giving me the opportunity to give this series of lectures and for providing ex tremely agreeable surroundings, the CEFIPRA programme "Analytic and Combinatorial Number Theory", project 2801-1 directed by Profes sors Bhowmik and Balasubramanian, for funding most of my journey, and finally my host, Professor Adhikari, without whom none of this would have been possible. I am also indebted to S. Baier who attended these lectures and pointed out useful references, as well as to the other persons in the audience for questions that helped me clarify these notes. Professor D. Surya Ramana has been of great help during the writing of this monograph: he has read many a new version, checked formu lae, corrected references as well as provided a most welcomed linguistic support. Chapter 3 is his, so is the last part of section 1.2.1 as well as several parts of the proofs presented. Both of us would like to thank the Indo-French Institute for Mathematics for supporting this collaboration. O. Raman~~ Contents Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. v Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 1 The large sieve inequality . . . . . . . . . . . . . . . . . . . . . . . 7 1.1 Hilbertian inequalities. . . . . . . . . . . . . . . . . . . . . .. 7 1.2 The large sieve inequality . . . . . . . . . . . . . . . . . . .. 9 1.3 Introducing Farey points. . . . . . . . . . . . . . . . . . . .. 13 1.4 A digression: dual form and double large sieve. . . . . .. 14 1.5 Maximal variant . . . . . . . . . . . . . . . . . . . . . . . . .. 14 2 An extension of the classical arithmetical theory of the large sieve 17 2.1 Sequences supported on compact sets. . . . . . . . . . . .. 17 2.2 A family of arithmetical functions . . . . . . . . . . . . . .. 18 2.3 An identity. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 20 2.4 The Brun-Titchmarsh Theorem. . . . . . .. 23 2.5 The Bombieri-Davenport Theorem ...... . 24 2.6 A detour towards lower bounds . . . . . . . . . . . . . . . . . 26 3 Some general remarks on arithmetical functions. 27 4 A geometrical interpretation . 31 4.1 Local couplings . . . . . . 31 4.2 The Fourier structure .. 32 4.3 Special cases ........................... . 35 4.4 Reduction to local properties . . . . . . . . . . . . . . . . . . 36 5 Further arithmetical applications . . . . . . . . . . . . . . . . . .. 39 5.1 On a large sieve extension of the Brun-Titchmarsh Theorem 39 5.2 Improving on the large sieve inequality for sifted sequences 42 5.3 An improved large sieve inequality for primes . . . . . . .. 42 5.4 A consequence for quadratic sequences. 44 5.5 A Bombieri-Vinogradov type Theorem 47 6 The Siegel zero effect . . . . . . . . . . . . . . 51 6.1 Zeros free regions and Siegel zeros. . . . . 51 6.2 Gallagher's prime number Theorem. . . . 53 6.3 Siegel zero and Brun-Titchmarsh Theorem. . . . . . . . .. 54 6.4 The Siegel zero effect . . . . . . . . . . . . . . . 56 6.5 A detour: the precursory theorem of Linnik . 57 6.6 And what about quadratic residues? . . . . . 60 viii Contents 7 A weighted hermitian inequality . . . 61 8 A first use of local models . . . . . . . . . . 63 8.1 Improving on the Brun-Titchmarsh Theorem . 63 8.2 Integers coprime to a fixed modulus in an interval. 64 8.3 Some auxiliary estimates on multiplicative functions. . .. 66 8.4 Local models for the sequence of primes . . . . . . . . . .. 69 8.5 Using the hermitian inequality. . . . . . . . . . . . . . . .. 72 8.6 Generalization to a weighted sieve bound. . . . . . . . .. 73 9 Twin primes and local models . . . . . . . . . . . . . . . . . . . . 75 9.1 The local model for twin primes . . 75 9.2 Estimation of the remainder term 77 9.3 Main proof. . . . . . . . . . . . . . . . . . . . 78 9.4 Guessing the local model. . . . . . . . . . . . . . . . . . . .. 79 9.5 Prime k-tuples . . . . . . . . . . . . 80 10 The three primes theorem. . . . . . . . . . . . . . . . . . . . . .. 83 10.1 An approximate Bessel inequality . . . . . . . . . . . . . .. 84 10.2 Some Fourier analysis to handle the size condition. . . .. 84 10.3 A general problem. . . . . . . . . . . . . . . . . . . . . . . .. 85 10.4 Asymptotic for ryt . . . . . . . . . . . . . . . . . . . . . . . .. 87 10.5 The local model. . . . . . . . . . . . . . . . . . . . . . . . .. 90 10.6 A slight digression. . . . . . . . . . . . . . . . . . . . . . . .. 93 11 The Selberg sieve. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 95 11.1 Position of the problem. . . . . . . . . . . . . . . . . . . . .. 95 11.2 Bordering system associated to a compact set. . . . . . .. 95 11.3 An extremal problem. . . . . . . . . . . . . . . . . . . . . .. 96 11.4 More on compact sets. . . . . . . . . . . . . . . . . . . . . .. 98 11.5 Pseudo-characters . . . . . . . . . . . . . . . . . . . . . . . .. 99 11.6 Selberg's bound through local models. . . . . . . . . . . . . 100 11. 7 Sieve weights in terms of local models. . . . . . . . . . .. 102 11.8 From the local models to the dual large sieve inequality .. 103 12 Fourier expansion of sieve weights . . . . . . . . . . . . . . . . .. 105 12.1 Dimension of the sieve . . . . . . . . . . . . . . . . . . . . .. 105 12.2 The Fourier coefficients. . . . . . . . . . . . . . . . . . . . . . 106 12.3 Distribution of 13K in arithmetic progressions 108 12.4 Fourier expansion of 13K . . . . . . . . . . . . . . . . . . . .. 108 13 The Selberg sieve for sequences. . . . . . . . . . . . . . . . . . .. 111 13.1 A general expression ........................ 111 13.2 The case of host sequences supported by a compact set. . 112 13.3 On a problem of Gallagher. . . . . . . . . . . . . . . . . . . . 112 Contents IX 13.4 On a problem of Gallagher, II .................. 115 13.5 On a subset of prime twins . . . . . . . . . . . . . . . . . .. 115 14 An overview ............... . 119 15 Some weighted sequences. . . . . . . . . . . . . . 121 15.1 Some special entire functions. . . . . . . . . . . . . . . . .. 121 15.2 Majorants for the characteristic function of an interval 123 15.3 A generalized large sieve inequality. . . . . . . . . . . . . .. 124 15.4 An application . . . . . . . . . . . . . . . . . . . . . . . . . .. 126 15.5 Perfect coupling . . . . . . . . . . . . . . . . . . . . . . . . .. 127 16 Small gaps between primes ....................... 129 16.1 Introduction ............................. 129 16.2 Some preliminary material. . . . . . . . . . . . . . . . . . . . 130 16.3 The actors and their local approximations. . . . . . . . .. 131 16.4 Computation of ::;ome hermitian products. . . . . . . . . . . 134 16.5 Final argument. . . . . . . . . . . . . . . . . . . . . . . . . . . 136 17 Approximating by a local model . . . . . . . . . . . . . . . . . .. 139 18 Selecting other sets of moduli ... . 143 18.1 Sieving by squares ..... . 143 18.2 A warning ............ . 144 19 Sums of two squarefree numbers . . . . . . . . . . . . . . . . . .. 147 19.1 Sketch of the proof. . . . . . . . . . . . . . . . . . . . . . .. 147 19.2 General computations ....................... 148 19.3 The hermitian product . . . . . . . . . . . . . . . . . . . . .. 150 19.4 Removing the Mq's . . . . . . . . . . . . . . . . . . . . . . .. 152 19.5 Approximating f and g. . . . . . . . . . . . . . . . . . . . . . 153 19.6 Crossed products .......................... 155 19.7 Main proof. . . . . . . . . . . . . . . . . . . . . . . . . . . .. 156 19.8 Afterthoughts. . . . . . . . . . . . . . . . . . 156 19.9 Adding a prime and a squarefree number ........... 157 20 On a large sieve equality . . . . . . . . . . . . . . . . . . . . . . .. 159 20.1 Informal presentation. . . . . . . . . . . . . . . . . . . . . . . 159 20.2 A detour towards limit periodicity. . . . . . . . . . . . . . . 160 20.3 A large sieve equality: a pedestrian approach. . . . . . .. 163 20.4 An application . . . . . . . . . . . . . . . . . . . . . . . . . .. 166 20.5 A large sieve equality: using more advanced technology. . 171 20.6 Equality in the large sieve inequality, II ............ 174 20.7 The large sieve inequality reversed. . . . . . . . . . . . . . . 176 21 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 177 x Contents 21.1 A general mean value estimate ...... . 177 21.2 A first consequence ............. . 180 21.3 Some classical sieve bounds ........ . 181 21.4 Products of four special primes in arithmetic progressions 183 Notations .................................... 187 References . 189 Index .... 199 Introduction The idea of the large sieve appeared for the first time in the foun dational paper of (Linnik, 1941). Later (R€myi, 1950), (Barban, 1964), (Roth, 1965), (Bombieri, 1965), (Davenport & Halberstam, 1966b) de veloped it and in particular, two distinct parts emerged from these works: (1) An analytic inequality for the values over a well-spaced set of points of a trigonometric polynomial 8(a) = L:I<n<N une(na), which, in arithmetical situations, most often reduces to (0.1) q<50Q amod*q n for some D. depending on the length N of the trigonometric polynomial and on Q. The best value in a general context is D. = N - 1 + Q2 obtained independently in (Selberg, 1972) and in (Montgomery & Vaughan, 1973). (2) An arithmetical interpretation for L:amod*q 1 8( a/ q) 12, where this time, information on the distribution of (Un) modulo q is intro duced. The most popular approach goes through a lower bound and is due to Montgomery, leading to what is sometimes referred to as Montgomery's sieve, by reference to (Montgomery, 1968). Today the terminology large sieve refers to a combination of the two aforementioned steps. We refer the reader to the excellent lecture notes (Montgomery, 1971) and the survey paper (Montgomery, 1978) for the early part of the development, but cite here the papers of (Bombieri & Davenport, 1968) and (Bombieri, 1971). Almost simultaneously, (Selberg, 1949) introduced another way of sieving, which we now describe rapidly in the following simple form for the primes: to find an upper bound for the number of primes in the interval ] VN, N], consider the following inequality (0.2) valid for any Ad'S subject to Al = 1 and Ad = 0 if d > z for some VN. parameter z ::; This leads to the determination of the minimum of the quadratic form on the R.H.S. of (0.2), a method for which Selberg designed an appropriate elementary method.