Arithmetic problems around the ABC conjecture and connections with logic by Hector H. Pasten Vasquez A thesis submitted to the Graduate Program in Mathematics and Statistics in conformity with the requirements for the degree of Doctor of Philosophy Queen’s University Kingston, Ontario, Canada April 2014 Copyright (cid:13)c Hector H. Pasten Vasquez, 2014 Abstract The main theme in this thesis is the ABC conjecture. We prove some partial results towards it and we find new applications of this conjecture, mainly in the context of Bu¨chi’s n squares problem (which has consequences in logic related to Hilbert’s tenth problem) and squarefree values of polynomials. We also study related topics, such as arithmetic properties of additive subgroups of Hecke algebras, function field and meromorphic value distribution, and undecidability of the positive existential theories over languages of arithmetic interest. i Co-Authorship Chapters 3 and 9 are joint work with my supervisor M. Ram Murty (Queen’s Univer- sity). From these two chapters we wrote the research papers [68] (published in the Journal of Number Theory) and [69] (accepted for publication in the International Journal of Number Theory). The content of Chapter 7 is joint work with Julie Tzu-Yueh Wang (Academia Sinica, Taiwan). From the work reported in this chapter, we wrote the research paper [77] (accepted for publication in the International Mathematics Research Notices). No other chapter in this thesis is co-authored. ii Acknowledgments I am in debt to a number of mathematicians for their advice, hints and encourage- ment. I would like to thank (in alphabetical order) Ernst Kani, Angus Macintyre, my supervisor Ram Murty, Thanases Pheidas, Mike Roth, Xavier Vidaux, Julie Wang and Noriko Yui. Specially, I thank Cesar Flores for suggesting, by the end of high school, that studying mathematics might be a good choice, and my supervisor Ram Murty for hinting (by means of a pile of papers that he gave me to read) that the ABC conjecture could be a good research topic. Contrary to what one might think, the man does not survive just by proving theorems. My PhD research and my life at Kingston were possible thanks to the support provided by Queen’s University and the Ontario Graduate Scholarship. Also, I gratefully acknowledge the generous support for attending specific conferences and workshops provided by Centre de Recherches Math´ematiques, Sociedad Matema´tica de Chile, The American Institute of Mathematics, The Fields Institute, Universidad de Concepcion and Ram Murty’s research grant. My life at Kingston was much easier thanks to several people that filled my days with entertaining incidents. In particular, I am glad that I met Valdemar Tsanov, IvanPenev,KarimRahim,AndrewHarder,NathanGrieve,HenrydeValence,Yutong Shan, Alexander Molnar, Owen Ren, and many other interesting individuals. iii I also thank my parents Olga and Hector, for encouraging me to achieve my goals from an early age, and my brothers Johan and Sofia for their moral support. Finally, I thank my beloved Natalia for her infinite patience, her concern about my well-being, her interest in my mathematical work, and her unconditional love. iv Statement of Originality This thesis is original work done by me, Hector Pasten. Chapter 1 gives an outline of the main topics investigated in this thesis, and Chapter 2 sets the notation and gives some background on known results. Chapters 3, 4, 5, 6, 7, 8, 9 and 10 consist of original research. Collaboration with other authors is acknowledged and detailed in the section Co- Authorship and at the beginning of the corresponding chapters, namely, chapters 3, 7 and 9. All other chapters in this thesis are entirely authored by me. The results due to other authors (included because we need them, or for com- parison purposes) are explicitly presented as such, following the traditional citation standards in Mathematics. v Contents Abstract i Co-Authorship ii Acknowledgments iii Statement of Originality v Contents vi Chapter 1: Introduction 1 1.1 The main themes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . 3 Chapter 2: Background 6 2.1 The ABC conjecture and heights . . . . . . . . . . . . . . . . . . . . 6 2.2 Elliptic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.3 Frey elliptic curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.4 Modular forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 Function fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.6 Complex meromorphic functions . . . . . . . . . . . . . . . . . . . . . 16 2.7 The ABC conjecture for number fields and a conjecture of Vojta . . . 18 2.8 Definability and undecidability . . . . . . . . . . . . . . . . . . . . . . 21 2.9 Bu¨chi’s problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Chapter 3: Modular forms and effective diophantine approximation 27 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.2 The index of the coprime Hecke algebra . . . . . . . . . . . . . . . . . 32 3.3 Bounding detA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 J 3.4 The congruence number and the modular degree . . . . . . . . . . . . 38 3.5 The height and minimal discriminant of elliptic curves . . . . . . . . 41 3.6 The height and modular degree of elliptic curves . . . . . . . . . . . . 43 vi 3.7 A bound for the Szpiro conjecture and the Height conjecture . . . . . 45 3.8 Effective bounds for the ABC conjecture and the S-unit equation . . 46 Chapter 4: Hecke operators with index coprime to the level and congruences 48 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.2 Newforms and coprime Hecke algebra . . . . . . . . . . . . . . . . . . 51 4.3 A duality result for T(cid:48) . . . . . . . . . . . . . . . . . . . . . . . . . . 52 N 4.3.1 An integrality result . . . . . . . . . . . . . . . . . . . . . . . 52 4.3.2 Hecke action . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3.3 A perfect pairing . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.4 Bound on generators for T(cid:48) . . . . . . . . . . . . . . . . . . . . . . . 55 N 4.4.1 Sturm bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.4.2 Generators for the coprime Hecke algebra . . . . . . . . . . . . 56 4.5 The quantities i and n(cid:48) revisited . . . . . . . . . . . . . . . . . . . . 58 N f 4.6 Congruences for indices coprime to the level . . . . . . . . . . . . . . 62 4.6.1 Coprime congruences . . . . . . . . . . . . . . . . . . . . . . . 62 4.6.2 Reduction to H . . . . . . . . . . . . . . . . . . . . . . . . . 63 Z 4.6.3 Explaining coprime congruences . . . . . . . . . . . . . . . . . 66 4.6.4 Dual for H . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Z 4.6.5 The dual of H(cid:48)/ω(H ) . . . . . . . . . . . . . . . . . . . . . . 68 Z Z 4.6.6 The coprime congruence modulus . . . . . . . . . . . . . . . . 69 4.6.7 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.7 The additive group generated by Hecke operators T . . . . . . . . . . 78 p 4.7.1 Generating with T ’s additively . . . . . . . . . . . . . . . . . 78 p 4.7.2 The ranks of P and P(cid:48) . . . . . . . . . . . . . . . . . . . . . 79 N N 4.7.3 The dual of P(cid:48) . . . . . . . . . . . . . . . . . . . . . . . . . . 81 N 4.7.4 The dual of T(cid:48) /P(cid:48) . . . . . . . . . . . . . . . . . . . . . . . . 83 N N 4.7.5 Prime congruences . . . . . . . . . . . . . . . . . . . . . . . . 84 4.7.6 An example of prime congruence . . . . . . . . . . . . . . . . 85 Chapter 5: The ratio of periods of elliptic curves 89 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 5.2 Basic facts about the period ratio . . . . . . . . . . . . . . . . . . . . 91 5.3 Relation to the Faltings height . . . . . . . . . . . . . . . . . . . . . . 92 5.4 The period conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . 94 5.5 Relation to the minimal discriminant . . . . . . . . . . . . . . . . . . 96 5.6 A conjecture of Vojta . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.7 Relation to the conductor . . . . . . . . . . . . . . . . . . . . . . . . 104 vii Chapter 6: Powerful values of polynomials and Vojta’s ABC con- jecture 110 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.2 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.3 Value distribution on extensions of bounded degree . . . . . . . . . . 126 6.3.1 Function fields . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.3.2 Meromorphic functions on finite ramified coverings of C . . . . 132 6.3.3 Proof of Theorem 114 . . . . . . . . . . . . . . . . . . . . . . 141 6.4 Diophantine approximation on extensions of bounded degree . . . . . 150 6.4.1 Algebraic points of the line . . . . . . . . . . . . . . . . . . . . 150 6.4.2 Proof of Theorem 111 . . . . . . . . . . . . . . . . . . . . . . 157 6.5 Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Chapter 7: Bu¨chi problem in higher powers for positive character- istic function fields 168 7.1 Introduction and main results . . . . . . . . . . . . . . . . . . . . . . 168 7.2 Preliminaries on value distribution . . . . . . . . . . . . . . . . . . . 173 7.3 Proof of the main result for function fields . . . . . . . . . . . . . . . 182 7.4 Generalized Bu¨chi’s problem in positive characteristic . . . . . . . . . 185 7.5 Consequences in logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 Chapter 8: Someexistentialundecidabilityresultsforsquares, primes, powers of two and elliptic curves 206 8.1 Introduction and results . . . . . . . . . . . . . . . . . . . . . . . . . 206 8.2 Lattice points in graphs . . . . . . . . . . . . . . . . . . . . . . . . . 210 8.3 Proof of Theorem 193 . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 8.4 The case of primes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215 8.5 Proof of Corollary 197 . . . . . . . . . . . . . . . . . . . . . . . . . . 217 8.6 The case of powers of 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 218 8.7 Analytic estimates for modular forms . . . . . . . . . . . . . . . . . . 219 8.8 Parity of Dirichlet coefficients of L(E,s) . . . . . . . . . . . . . . . . 221 8.9 The case of elliptic curves . . . . . . . . . . . . . . . . . . . . . . . . 222 8.10 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224 Chapter 9: Counting squarefree values of polynomials with error term 226 9.1 Introduction and results . . . . . . . . . . . . . . . . . . . . . . . . . 226 9.2 Heights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229 9.3 Belyi maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232 9.4 Explicit ABC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 9.5 Sieve preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 viii 9.6 Error term for counting squarefree values . . . . . . . . . . . . . . . . 242 9.7 A more general result . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 9.8 Proof of Theorem 215 . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 Chapter 10: Squarefree values of polynomials at prime arguments 252 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252 10.2 Sieving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256 10.3 A reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262 10.4 The ABC conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 10.5 Further applications of ABC . . . . . . . . . . . . . . . . . . . . . . . 268 10.6 Arithmetic progressions of primes . . . . . . . . . . . . . . . . . . . . 269 10.7 Proof of Theorem 231 . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 Chapter 11: Summary and Conclusions 275 11.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275 11.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 11.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276 Bibliography 277 ix
Description: