ebook img

Arithmetic hyperbolic manifolds PDF

107 Pages·2014·1.06 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Arithmetic hyperbolic manifolds

1 Arithmetic hyperbolic manifolds AlanW.Reid UniversityofTexasatAustin CornellUniversity June2014 2 Thurston(Qn19ofthe1982BulletinoftheAMSarticle) Findtopologicalandgeometricpropertiesofquotientspacesof arithmeticsubgroupsofPSL(2,C). Thesemanifoldsoftenseemto havespecialbeauty. 3 Thurston(Qn19ofthe1982BulletinoftheAMSarticle) Findtopologicalandgeometricpropertiesofquotientspacesof arithmeticsubgroupsofPSL(2,C). Thesemanifoldsoftenseemto havespecialbeauty. Manyofthekeyexamplesinthedevelopmentofthetheoryof geometricstructureson3-manifolds(e.g. thefigure-eightknot complement,theWhiteheadlinkcomplement,thecomplementofthe BorromeanringsandtheMagicmanifold)arearithmetic. 4 5 Themodulargroup Thebasicexampleofan”arithmeticgroup”is PSL(2,Z) = SL(2,Z)/ Id. ± 6 Themodulargroup Thebasicexampleofan”arithmeticgroup”is PSL(2,Z) = SL(2,Z)/ Id. ± Everynon-cocompactfiniteco-areaarithmeticFuchsiangroupis commensurablewiththemodulargroup. 7 Themodulargroup Thebasicexampleofan”arithmeticgroup”is PSL(2,Z) = SL(2,Z)/ Id. ± Everynon-cocompactfiniteco-areaarithmeticFuchsiangroupis commensurablewiththemodulargroup. SomeparticularlyinterestingsubgroupsofPSL(2,Z)offiniteindex arethecongruencesubgroups. 8 AsubgroupΓ < PSL(2,Z)iscalledacongruencesubgroupifthere existsann ZsothatΓcontainstheprincipalcongruencegroup: ∈ Γ(n) = ker PSL(2,Z) PSL(2,Z/nZ) , { → } wherePSL(2,Z/nZ) = SL(2,Z/nZ))/ Id . {± } 9 AsubgroupΓ < PSL(2,Z)iscalledacongruencesubgroupifthere existsann ZsothatΓcontainstheprincipalcongruencegroup: ∈ Γ(n) = ker PSL(2,Z) PSL(2,Z/nZ) , { → } wherePSL(2,Z/nZ) = SL(2,Z/nZ))/ Id . {± } niscalledthelevel. 10 Thestructureofcongruencesubgroups(genus,torsion,numberof cusps)hasbeenwell-studied. RademacherConjecture: Thereareonlyfinitelymanycongruence subgroupsofgenus0(orfixedgenus).

Description:
These manifolds often seem to geometric structures on 3-manifolds (e.g. the figure-eight knot .. Generators for the fundamental group are (from.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.