ARISTOTLE UNIVERSITY OF THESSALONIKI FACULTY OF ENGINEERING SCHOOL OF CIVIL ENGINEERING POSTGRADUATE SPECIALIZATION PROGRAMME «EARTHQUAKE ENGINEERING AND SEISMIC DESIGN OF STRUCTURES» Master Thesis «GiD+OpenSees Interface: A major extension to nonlinear finite element analysis» Theocharis Kartalis Kaounis Civil Engineer, AUTh Committee members: Assistant Prof. Vassilis K. Papanikolaou (Supervisor) Assistant Prof. Dimitrios Pitilakis Assistant Prof. George Stefanou Thessaloniki, November 2017 Acknowledgments Completing my Master Thesis as part of my Postgraduate Specialization studies, I could not leave out the paragraph in which I want to express my deep thanks and give the credits to the people who supported my work and me for finishing my Master Thesis. I would first like to express deep gratitude to my thesis supervisor Vassilis K. Papanikolaou, Professor (Assistant) at the Laboratory of Reinforced Concrete and Masonry Structures, School of Civil Engineering at Aristotle University of Thessaloniki in Greece, for his continuous guidance and the time he dedicated for the whole project. His frequent counselling and advice, that have been critical for the outcome of the present thesis, is mostly appreciated. Moreover, I would like to thank the members of my Dissertation committee, Dimitrios Pitilakis, Assistant Professor at Laboratory of Soil Mechanics and Geotechnical Earthquake Engineering, Division of Soil Mechanics at Aristotle University of Thessaloniki and George Stefanou, Assistant Professor at Laboratory of Structural Analysis and Dynamics of Structures, Division of Structural Engineering at Aristotle University of Thessaloniki. Each of them has provided me extensive personal and professional guidance and taught me a great deal about scientific research. Last but not least, I am obliged to thank my parents, Maria and Nikolaos, as well as my whole family and friends for their continuous support all these years, which definitely contributed to the accomplishment of my studies. ABSTRACT The objective of this dissertation is to present a new graphical user interface that has been recently developed for OpenSees, which seamlessly connects the OpenSees solver with the general pre/post-processor GiD including its recent extension to nonlinear finite element analysis. This interface, available as open-source, is easily installed in the GiD graphical environment and provides an extended set of user dialogs and tools to efficiently create model geometry, assign materials, elements and boundary conditions, select various analysis options and finally invoke the OpenSees solver to execute the analysis. The interface automatically transforms the bulk of numerical results produced by OpenSees to a GiD compatible format, for the user to take advantage of the versatile GiD graphical postprocessor. This includes a deformed shape viewer with animation capabilities, force/stress/strain vectors and contours, line diagrams and x-y graphs. At the present state of development, majority of advanced modeling capabilities of OpenSees are supported, which renders the interface as a promising alternative to the cumbersome code-based modeling, considerably shortening the respective learning curve, especially for new and inexperienced users. ΠΕΡΙΛΗΨΗ Η παρούσα μεταπτυχιακή εργασία έχει ως κύριο στόχο την παρουσίαση ενός νέου γραφικού περιβάλλοντος που αναπτύχθηκε πρόσφατα για το πρόγραμμα ανάλυσης OpenSees που χρησιμοποιεί τη μέθοδο Πεπερασμένων Στοιχείων, καθώς και των εκτεταμένων δυνατοτήτων που υποστηρίζονται πλέον στο πλαίσιο της μη γραμμικής ανάλυσης. Πρόκειται για τη συνεργασία του OpenSees με το γενικής χρήσης πρόγραμμα προεπεξεργασίας και μετεπεξαργασίας GiD μέσω της ανταλλαγής αρχείων. Το γραφικό περιβάλλον, διαθέσιμο πλέον ως ανοικτού κώδικα πρόγραμμα, αποτελεί μια επέκταση στο γραφικό περιβάλλον του GiD και παρέχει παράθυρα αλληλεπίδρασης με το χρήστη καθώς και πλήθος εργαλείων που αφορούν τη σχεδίαση, τον ορισμό υλικών, στοιχείων, συνοριακών συνθηκών κλπ., τη διακριτοποίηση, καθώς και πληθώρα επιλογών ανάλυσης, για την οποία λαμβάνει χώρα το πρόγραμμα OpenSees. Το πρόγραμμα αυτόματα μετατρέπει τα ογκώδη αριθμητικά αποτελέσματα που εξάγει το OpenSees σε ειδικά αρχεία για την εισαγωγή τους στο γραφικό περιβάλλον μετεπεξαργασίας που παρέχεται από το GiD, μέσα από το οποίο ο χρήστης μπορεί να παρακολουθήσει τα επιθυμητά αποτελέσματα όπως παραμορφωμένους φορείς, δυνάμεις, τάσεις, παραμορφώσεις μέσω διανυσμάτων ή με κλίμακα χρωμάτων, διαγράμματα εφαρμοσμένα πάνω στον φορέα καθώς και διαγράμματα μορφής x-y. Με αυτόν τον τρόπο το παρόν πρόγραμμα αποτελεί ένα εναλλακτικό και πολλά υποσχόμενο εργαλείο προσομοίωσης, ανάλυσης και μετεπεξαργασίας μοντέλων, έχοντας ως παράλληλο στόχο την εύκολη και γρήγορη ανάλογη εκπαίδευση, ειδικά για νέους και άπειρους χρήστες του OpenSees. Table of Contents Introduction ............................................................................................................... 1 General ................................................................................................................... 1 Objectives ............................................................................................................... 2 Overview ................................................................................................................. 3 User Manual .............................................................................................................. 4 Introduction ............................................................................................................. 4 General ................................................................................................................... 5 Installing/Uninstalling the Interface ...................................................................... 5 Loading the OpenSees problem type .................................................................. 6 Pre-Processor ......................................................................................................... 9 General ................................................................................................................ 9 Theme ................................................................................................................. 9 Units .................................................................................................................... 9 Problem Type Transformation ........................................................................... 10 Reset to new Problem Type .............................................................................. 10 Geometry Modeling ........................................................................................... 11 Materials/Sections F-D Types ........................................................................... 16 Section F-D models ........................................................................................... 18 Steel Uniaxial Materials ..................................................................................... 27 Concrete Uniaxial Materials ............................................................................... 36 Other Uniaxial Materials .................................................................................... 43 Combined Materials........................................................................................... 53 nD Materials ...................................................................................................... 55 Element Types .................................................................................................. 67 Beam Column Elements .................................................................................... 69 Beam-Column Local Axes ................................................................................. 72 Truss Elements ................................................................................................. 73 Surface Elements .............................................................................................. 74 Volume Elements .............................................................................................. 76 Conditions ......................................................................................................... 77 Zero Length Elements ....................................................................................... 78 Records ............................................................................................................. 79 Restraints .......................................................................................................... 82 Constraints ........................................................................................................ 83 Loading Parameters .......................................................................................... 85 Masses .............................................................................................................. 89 Rayleigh Damping ............................................................................................. 90 Dead Loads ....................................................................................................... 92 General Data ..................................................................................................... 94 Intervals Data .................................................................................................... 96 Output Options ................................................................................................ 100 Meshing Options ............................................................................................. 101 Analysis Options .............................................................................................. 104 GiD+OpenSees menu ..................................................................................... 107 Processor ............................................................................................................ 112 OpenSees to GiD converter ............................................................................ 112 Post Processor .................................................................................................... 113 View Results and Deformation ........................................................................ 115 Plot Graphs ..................................................................................................... 119 Animation ........................................................................................................ 121 Quick Start .......................................................................................................... 124 Tutorial 1 – Static and Modal Analysis of a Three-Story Building .................... 124 Tutorial 2 – Pushover Analysis of a Three-Story Building................................ 138 Tutorial 3 – Dynamic Analysis of a Three-Story Building ................................. 149 Tutorial 4 – Nonlinear Reversed Cyclic Static Analysis on Beam-Column Joint ........................................................................................................................ 154 Tutorial 5 – Site Response Analysis of a Layered Soil Column ....................... 161 Tutorial 6 – Pushover Analysis on 2D Frame considering Soil sustainability .. 174 REFERENCES ....................................................................................................... 183 1 Introduction General Nowadays, Engineering students and researchers as well use almost exclusively computer programs for the modeling and analysis of structural and geotechnical problems. The vast majority of these programs are based on the Finite Element Method with which, complicated geometrical problems can be solved easily enough where analytical solutions cannot be obtained. Furthermore, nonlinear dynamic and static analysis is used more and more in the assessment of existing structures in regions of high seismic risk and in the development of retrofit strategies. The Open System for Earthquake Engineering Simulation (OpenSees) is one of most powerful Finite Element Analysis programs which is deeply established in the student and research community despite the fact that it is a text-based solver which makes it hard to be used from inexperienced users without programming skills. More specifically, the OpenSees was developed as open-source at the PEER Center [1] and is increasingly popular analysis software framework in earthquake engineering research, since it provided a robust solver with numerous standard and advanced constitutive laws, finite element types, boundary conditions and analysis capabilities. However, both the analysis solver and the produced result files are text-based, which requires a prior knowledge of TCL coding, even for building simple models. More importantly, the bulk of numeric results, especially when large in size, require the development of ad-hoc postprocessing tools (e.g. MATLAB) for easier interpretation via plotting or visualization. The above disadvantage is often a deterring factor for new users to adopt OpenSees in their research, usually resorting to other software packages with graphical capabilities. Consequently, there is a great need for a graphical user interface allowing users to deeply learn and understand OpenSees modelling as well as allowing them to model difficult geometrical problems in greatly reduced time. GiD+OpenSees Interface was first developed in the context of the writer’s diploma thesis in cooperation with Evangelos Protopapadakis and Theocharis Papadopoulos under the supervising and contribution of Assistant Prof. Vassilis K. Papanikolaou. At that point, the interface was limited to elastic linear analysis only but including all the geometry capabilities and functions that GiD provides and extending mainly the OpenSees geometry modelling capabilities. It was very soon incorporated into the academic community, being a software package analysis tool of a few diploma theses, which formed a key role to further development and validation of the GiD+OpenSees Interface. The writer, continuing his studies on 2 postgraduate level, was extending and upgrading the Interface functionalities by placing emphasis on the non-linear (static and dynamic) finite element analysis. Objectives The main goal of this dissertation was to extend the standard capabilities of the GiD+OpenSees Interface to few advanced ones supported by OpenSees, so that it will be a remarkable free open source tool which will be helpful to the Engineering research society. Furthermore, in a comparison between the use of OpenSees alone and using the present Interface, inexperienced users can learn faster with less experience required. This advantage is depicted in Fig. 1 comparing the two learning curves. Figure 1: Comparison between OpenSees and GiD+OpenSees learning curves At the current state of development there exists a balance point above which the OpenSees user (experienced enough) will no longer be benefited from the Interface, due to the current limitations in terms of supported materials and elements. However, since the Interface is provided as open-source, it is believed that future versions will contain the complete OpenSees functionality, shifting this balance point to infinity. More specifically, the addition of advanced modeling as well as analysis features was attempted and achieved. Consequently, this thesis aims to present the GiD+OpenSees Interface functionalities in detail, as well as to provide to users the necessary knowledge and tools for using this Interface efficiently through a detailed Interface user manual. [2]
Description: