ARISTOTLE UNIVERSITY OF THESSALONIKI DEPARTMENT OF MATHEMATICS, PHYSICS and COMPUTATIONAL SCIENCES FACULTY OF TECHNOLOGY ANGELIKI D. PAPANA B.Sc. in Mathematics NONLINEAR STATISTICAL ANALYSIS OF BIOLOGICAL TIME SERIES PhD THESIS Thessaloniki,2009 ANGELIKID.PAPANA NONLINEARSTATISTICALANALYSISOFBIOLOGICALTIMESERIES PhDTHESIS SubmittedtoDepartmentofMathematics, PhysicsandComputationalSciences, FacultyofTechnology Dayoforalexamination: 24June,2009 Adjudicatecommittee Ass. ProfessorD.Kugiumtzis,Supervisor Ass. ProfessorG.Zioutas,Memberoftheconsultivecommittee ProfessorA.Bountis,Memberoftheconsultivecommittee ResearcherA’A.Provata,Examiner ProfessorC.Moyssiadis,Examiner Asso. ProfessorN.Maglaveras,Examiner Ass. ProfessorI.Rekanos,Examiner i Acknowledgements This research project is implemented within the framework of the ”Reinforce- ment Programme of Human Research Manpower” (PENED) and is co-financed at 90% jointly by E.U.-European Social Fund (75%) and the Greek Ministry of Development-GSRT(25%)andat10%byRikshospitalet,Norway. ii (cid:176)c ANGELIKID.PAPANA (cid:176)c A.U.T NONLINEARSTATISTICALANALYSISOFBIOLOGICALTIMESERIES ISBN ”The approval of this PhD Thesis from the Department of Mathematics, Physics andComputationalSciencesofAristotleUniversityofThessalonikidoesnotimply acceptanceoftheopinionofthewriters”(Regulation5343/1932,Article202,par. 2). iii Contents 1 Introduction 2 2 Physiology 7 2.1 EEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 ExtracranialEEG . . . . . . . . . . . . . . . . . . . . . . 8 2.1.2 IntracranialEEG . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 ArtifactsinEEG . . . . . . . . . . . . . . . . . . . . . . 9 2.1.4 ExtracranialvsintracranialEEG . . . . . . . . . . . . . . 10 2.1.5 EEGbands . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.6 EEGpreprocessing . . . . . . . . . . . . . . . . . . . . . 11 2.2 MEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 BrainStates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 EEGDatafortheEvaluationoftheNonlinearMeasures . . . . . . 13 3 Methodology 15 3.1 DynamicalSystemsandChaosTheory . . . . . . . . . . . . . . . 15 3.1.1 Dynamicalsystems . . . . . . . . . . . . . . . . . . . . . 15 3.1.2 Nonlineartimeseriesanalysis . . . . . . . . . . . . . . . 18 3.2 Statisticalanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.2.1 Surrogatedatatest . . . . . . . . . . . . . . . . . . . . . 22 3.2.2 Trenddetection . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.3 Statisticaltestsforparameters . . . . . . . . . . . . . . . 23 3.2.4 ROCcurves . . . . . . . . . . . . . . . . . . . . . . . . . 25 4 MutualInformation 27 4.1 MutualInformation: DefinitionandProperties . . . . . . . . . . . 28 4.2 MutualInformationEstimators . . . . . . . . . . . . . . . . . . . 29 4.2.1 Binningestimators . . . . . . . . . . . . . . . . . . . . . 30 4.2.2 k-nearestneighborsestimator . . . . . . . . . . . . . . . 32 4.2.3 Kernelestimator . . . . . . . . . . . . . . . . . . . . . . 33 4.3 ApplicationsofMutualInformation . . . . . . . . . . . . . . . . 35 4.3.1 Independencetest . . . . . . . . . . . . . . . . . . . . . . 36 4.3.2 Nonlinearitytest . . . . . . . . . . . . . . . . . . . . . . 41 iv 4.3.3 Detectionofdynamicalchanges . . . . . . . . . . . . . . 45 4.4 EvaluationofMutualInformationEstimators . . . . . . . . . . . 50 5 EvaluationofUnivariateCorrelationandInformationMeasuresinDe- tectingDynamicalChanges 73 5.1 CorrelationandInformationmeasures . . . . . . . . . . . . . . . 73 5.1.1 Lineardecorrelationtimeordecaytime . . . . . . . . . . 73 5.1.2 Nonlineardecorrelationtime . . . . . . . . . . . . . . . . 74 5.1.3 Declinationfromnormality. . . . . . . . . . . . . . . . . 74 5.2 Entropymeasures . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.1 Shannonentropyontwovariables . . . . . . . . . . . . . 76 5.2.2 Shannon entropy on variables from recurrence quantifica- tionanalysis . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2.3 Tsallisentropy . . . . . . . . . . . . . . . . . . . . . . . 78 5.2.4 Sampleentropy . . . . . . . . . . . . . . . . . . . . . . . 78 5.2.5 Permutationentropy . . . . . . . . . . . . . . . . . . . . 79 5.3 ApplicationsofInformationMeasures . . . . . . . . . . . . . . . 79 5.3.1 Evaluation of three types of correlation measures in dis- criminatingregimesofdynamicalsystems . . . . . . . . . 79 5.3.2 Evaluation of information measures in detecting dynami- calchanges . . . . . . . . . . . . . . . . . . . . . . . . . 85 6 ApplicationsofUnivariateInformationMeasuresonEEG 93 6.1 Short-termPredictionofEpilepticSeizuresfromPreictalEEGRecords andDiscriminationofDifferentBrainStatesusingStatisticalTests 94 6.1.1 Results for the short-term trend detection on late preictal EEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.1.2 Results for the discrimination between early and late pre- ictalstates . . . . . . . . . . . . . . . . . . . . . . . . . . 98 6.2 Evaluation of a large set of Correlation and Entropy Measures in DiscriminatingPreictalStatesusingStatisticalTests . . . . . . . . 101 6.3 Evaluation of Information and Complexity Measures in Discrimi- natingStatesusingROCCurves . . . . . . . . . . . . . . . . . . 107 6.3.1 Apilotstudy . . . . . . . . . . . . . . . . . . . . . . . . 107 6.3.2 Alargescalestudy . . . . . . . . . . . . . . . . . . . . . 108 7 Evaluation of Causality Measures in Detecting the Direction of Infor- mationFlow 115 7.1 CausalityMeasures . . . . . . . . . . . . . . . . . . . . . . . . . 117 7.1.1 Statespacemeasures . . . . . . . . . . . . . . . . . . . . 118 7.1.2 Synchronizationmeasures . . . . . . . . . . . . . . . . . 121 7.1.3 Informationmeasures. . . . . . . . . . . . . . . . . . . . 122 7.1.4 Relationshipsofcausalitymeasures . . . . . . . . . . . . 124 7.2 EvaluationofCausalityMeasuresonknownsystems . . . . . . . 124 v 7.2.1 SimulationSet-Up . . . . . . . . . . . . . . . . . . . . . 124 7.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.2.3 A pilot study: effectiveness of the causality measures on EEG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 7.2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 131 7.3 ImprovingStatisticalSignificanceofCausalityMeasures . . . . . 131 7.3.1 ModificationsofCausalityMeasures. . . . . . . . . . . . 132 7.4 EvaluationofImprovedCausalitymeasuresonknownsystems . . 139 7.4.1 SetUp . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 7.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 7.4.3 Quantitative results from the evaluation of the causality measures . . . . . . . . . . . . . . . . . . . . . . . . . . 157 7.4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 165 7.5 EvaluationofImprovedCausalityMeasuresonEEG . . . . . . . 168 7.5.1 SetUp . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 7.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 7.5.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 170 8 Conclusions 172 8.1 GeneralOverview . . . . . . . . . . . . . . . . . . . . . . . . . . 172 8.2 Suggestionsforfuturework. . . . . . . . . . . . . . . . . . . . . 174 vi Abstract In the present thesis, methods of non-linear time series analysis and dynamical systemsanalysishavebeencombinedwithstatisticalmethods,andstatisticalmea- sures with high discriminating power directly estimated on time series have been studiedanddeveloped. Specifically,existingunivariateandmultivariatelinearand nonlinearmeasureshavebeenthoroughlyreviewed,newnonlinearmeasureshave been defined here and existing methods have been extended or modified to gain statistical significance and be more effective on different applications. All the in- vestigated measures were first tested on simulation studies and were then applied onrealdata. Electroencephalogram(EEG)recordingsfromepilepticpatientshave beenconsideredinordertoevaluatetheeffectivenessofthemeasurestodetectdy- namicalchangesinthebrainactivityofthepatientsatdifferentstates,e.g. inorder todiscriminatebetweenEEGrecordsmanyhoursbeforetheseizureonsetandEEG records from one hour before the seizure onset. The prediction of the onset of an epilepticseizureandthedetectionofthedynamicalchangesofthebraindynamics just before the seizure onset were investigated in the frame of univariate time se- riesanalysis. Theperformanceoftheunivariatemeasureswasquitepromisingand therefore the study was extended beyond the univariate case. Thus, the existence ofinterdependenciesbetweendifferentbrainareasandtheidentificationofthedi- rectionofthecausaleffectsamongthebrainareaswasinvestigatedintheframeof multivariatetimeseriesanalysis. Thestudyfocusedoninformationmeasures,astheyaremodel-free,computa- tionallyefficientand do not require anyprior knowledgeof the distributionof the data. TheevaluationoftheinformationmeasureswasfirstassessedbyMonteCarlo simulationsonwell-knowndynamicalsystemsinordertoexaminetheirdiscrimi- natingpowerandsignificance. Dynamicalcharacteristicsofthesystemsvariedby changingtheparametersoftheequationofthesystems. Thediscriminatingability ofthemeasureswasalsoassessedintermsofthetimeserieslength. Thestochas- ticity of the systems was also a factor that was examined as it can be controlled by variation of the level of noise added in the observations of the systems. The variation of the complexity or stochasticity of a system is considered to simulate thedifferentstatesofthebrainactivityandthusoftheEEGsignal. Mutual information is an essential tool in nonlinear time series analysis and thereforewasthoroughlyreviewedandtestedondifferentapplications,e.g. inde- tectingdynamicalchangesofsystems. Differentestimatorsofmutualinformation havebeencomparedandtheselectionoftheirparameterswasinvestigatedinorder tobe optimized. The promising performance ofmutual information led to a more comprehensive study which included also entropy measures (e.g. Shannon, Tsal- lis, Permutation). This investigation has led to the extension and modification of manyexistingmeasures. Thestatisticalsignificanceandpowerofthemeasuresin discriminationtaskswereassessedusingdifferentstatisticaltests(t-test,Wilcoxon ranksumtest,ROCcurves,surrogatedatatest). Itwasalsoexaminedwhetherthe discriminatingpowerofthemeasurescanbeimprovedifthetimeserieswerefirst transformedtohaveuniformornormalmarginaldistribution. The results from the simulation studies on known dynamical systems were required in order to interpret the values of the estimated measures on the EEG recordingsintermsoftheirstochasticityandcomplexity. Thus,themeasureswere evaluatedindiscriminatingEEGsignalfrompreictalandinterictalstages. Theef- fectiveness of the nonlinear measures was compared to that of some linear ones, as there are contradictory studies on this matter. Based on the frame of univari- atetimeseriesanalysis,EEGrecordingsfromdifferentchannelswereusedforthe analysis; channels were chosen based on knowledge of the epileptic focus area or were randomly selected in cases of generalized seizures to cover all parts of the brain. EEG recordings are multivariate signals, and therefore one should also test the interdependencies between the recordings from the different channels, i.e. the existence of interactions among the different parts of the brain should be exam- ined. Here, the direction of the information flow was investigated using bivariate nonlinear measures. The study focused again on information measures detecting thedirectionofinterdependenciesbetweeninteractingsystems,howeveralsoother types of causal measures were included for comparative studies, e.g. state-space and synchronization measures. The evaluation of the causality measures was ini- tially assessed on well-known nonlinear systems and results were considered in ordertoapplythemeasuresonEEGsignals. Thisstudyledusagaininthemodifi- cationoftheexistingmeasuresandtheextractionofmeasuresthatseemtoimprove theirperformance. Thereexistmeasuresthatcandiscriminateamongdifferentdynamicalsystems anddetectthedynamicalchangesofasystemsandsomeofthemeasuresthathave been defined here may improved the discriminating power of the original mea- sureswhentestedonsyntheticdata,howevereventheseimprovedmethodsdonot perform dramatically better on EEG. EEG signal is very complex and the finite length of the EEG signal, the measurement artifacts and the interactions between thedifferentbrainpartsrendertheproblemoftheEEGanalysistobeevenharder. Thereisstillalongwaytogofortheuseofanymeasureinclinicalpractice. The main contribution of this work is to assess the statistical significance of the infor- mationmeasuresforunivariateandbivariatetimeseries,proposemodificationsto attainbettersignificanceandshowinanobjectiveclinicalsettingtheshortcomings andpossiblelimitedsuccessofmanyexistingmeasuresfortheproblemofseizure prediction. ii Publications Thefindingsofthisthesishavebeenpresentedinconferences,havebeenpublished orhavebeensubmittedtointernationaljournalsinthefieldofnonlineardynamics, time series analysis or statistical analysis. The respective references of the papers inproceedingsandjournalsarepresentedhere. P1 A. Papana and D. Kugiumtzis. Cumulative Mutual Information Function as a StatisticfortheTestforNonlinearityonTimeSeries(inGreek). Proceedings ofthe18thGreekStatisticalConference,Rhodes,pp. 315–325,2005. P2 D. Kugiumtzis, A. Papana, I. Vlachos and P.G. Larsson. Time series feature evaluationindiscriminatingpreictalEEGstates. LectureNotesinComputer Science,Vol. 4345,pp. 298–310,2006. P3 A. Papana and D. Kugiumtzis. Linear and nonlinear correlation measures of timeseriesforseizureprediction(inGreek). Proceedingsofthe19thGreek StatisticalConference,Kastoria,pp. 415–423,2006. P4 D. Kugiumtzis, I. Vlachos, A. Papana and P.G. Larsson. Assessment of Mea- suresofScalarTimeSeriesAnalysisinDiscriminatingPreictalStates. NEU- ROMATHWorkgroupmeetingandWorkshop,Rome,2–4December,2007. P5 D. Kugiumtzis, I. Vlachos, A. Papana and P.G. Larsson. Assessment of Mea- sures of Scalar Time Series Analysis in Discriminating Preictal States. In- ternationalJournalofBioelectromagnetism,Vol. 9(3),pp. 134–145,2007. P6 A. Papana and D. Kugiumtzis. Evaluation of Histogram-Based Estimators of Mutual Information in Time Series (in Greek). Proceedings of the 20th GreekStatisticalConference,Nicosia,Cyprus,pp. 329–336,2007. P7 A. Papana and D. Kugiumtzis. Evaluation of Mutual Information Estimators onNonlinearDynamicSystems. NonlinearPhenomenainComplexSystems, Vol. 11(2),pp. 225–232,2008. P8 A. Papana and D. Kugiumtzis. Detection of Directionality of Information Transfer in Nonlinear Dynamical Systems. Topics on Chaotic Systems, Se- lected Papers from CHAOS 2008 International Conference, 3-6 June, Cha- nia,Crete,pp. 251–264,WorldScientific. i
Description: