ebook img

Are Osteoclasts Needed for the Bone Anabolic Response to PDF

12 Pages·2010·1.54 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Are Osteoclasts Needed for the Bone Anabolic Response to

THEJOURNALOFBIOLOGICALCHEMISTRYVOL.285,NO.36,pp.28164–28173,September3,2010 ©2010byTheAmericanSocietyforBiochemistryandMolecularBiology,Inc. PrintedintheU.S.A. Are Osteoclasts Needed for the Bone Anabolic Response to Parathyroid Hormone? ASTUDYOFINTERMITTENTPARATHYROIDHORMONEWITHDENOSUMABOR ALENDRONATEINKNOCK-INMICEEXPRESSINGHUMANIZEDRANKL*□S Receivedforpublication,January7,2010,andinrevisedform,June1,2010Published,JBCPapersinPress,June17,2010,DOI10.1074/jbc.M110.101964 DominiqueD.Pierroz‡,NicolasBonnet‡,PaulA.Baldock§,MichaelS.Ominsky¶,MarinaStolina¶,PaulJ.Kostenuik¶, andSergeL.Ferrari‡1 Fromthe‡ServiceofBoneDiseases,DepartmentofRehabilitationandGeriatrics,GenevaUniversityHospitalandFacultyof Medicine,1211Geneva14,Switzerland,the§BoneandMineralProgram,GarvanInstituteofMedicalResearch,St.Vincent’s Hospital,Sydney,NewSouthWales2010,Australia,andthe¶MetabolicDisordersResearch,AmgenInc.,ThousandOaks,California91320 PTH stimulates osteoblastic cells to form new bone and to bonemicroarchitectureandstrength(1).PTHinducesarapid produceosteoblast-osteoclastcouplingfactorssuchasRANKL. increaseinmarkersofboneformationbeforeitalsoincreases WhetherosteoclastsortheiractivityareneededforPTHanab- boneresorption,whichhasbeendescribedasan“anabolicwin- olismremainsuncertain.WetreatedovariectomizedhuRANKL dow”(2).Inthiswindow,PTHhasbeensuggestedtodirectly knock-in mice with a human RANKL inhibitor denosumab activateboneformationviaboneliningcellsonquiescentbone (DMAb),alendronate(Aln),orvehiclefor4weeks,followedby surfaces (i.e. modeling surfaces), as indicated by an increase co-treatmentwithintermittentPTHfor4weeks.Lossofbone indoubletetracycline-labeledsurfacesandasmoothcement massandmicroarchitecturewaspreventedbyAlnandfurther line(3).PTHsubsequentlystimulatesboneremodeling,first significantly improved by DMAb. PTH improved bone mass, through activation of osteoclastic bone resorption in the microstructure,andstrength,andwasadditivetoAlnbutnot basicmulticellullarunits(BMU),followedbynewbonefor- toDMAb.Alninhibitedbiochemicalandhistomorphometri- mation by osteoblasts. These remodeling-based BMUs are calindicesofboneturnover,-i.e.osteocalcinandboneforma- associated with scalloped cement lines by microscopy. Data tionrate(BFR)oncancellousbonesurfaces-,andDmabinhib- from untreated adult rodents indicate that the ratio of bone ited them further. However Aln increased whereas Dmab modeling:remodeling surfaces is less than 1:5 and further suppressedosteoclastnumberandsurfaces.PTHsignificantly decreases with age (4). Although PTH has been shown to increased osteocalcin and bone formation indices, in the increase bone modeling in rodents, the vast majority of bone absence or presence of either antiresorptive, although BFR formationinhumansappearstoberemodeling-based(5).Data remainedlowerinpresenceofDmab.TofurtherevaluatePTH fromhumanstreatedwithPTHindicatethatboneformation effectsinthecompleteabsenceofosteoclasts,highdosePTH onmodelingsurfacesaccountsforonly5–30%ofPTHanabolic wasadministeredtoRANK(cid:1)/(cid:1)mice.PTHincreasedosteocalcin effects(6).WhileintermittentPTHcanpartiallyrestorebone similarlyinRANK(cid:1)/(cid:1)andWTmice.ItalsoincreasedBMDin microarchitecture by increasing bone formation in modeling RANK(cid:1)/(cid:1)mice,althoughlessthaninWT.Theseresultsfurther andremodelingosteons(5),italsostimulatesHaversianbone indicatethatosteoclastsarenotstrictlyrequiredforPTHanab- remodelingleadingtocorticalporosity(7,8).Incontrast,anti- olism,whichpresumablystilloccursviastimulationofmodel- resorptivetherapies,suchasbisphosphonates(e.g.alendronate ing-basedboneformation.HoweverthemagnitudeofPTHana- (Aln)), inhibit bone remodeling and maintain, but do not bolic effects on the skeleton, in particular its additive effects restore, bone microarchitecture. These attributes have led to withantiresorptives,dependsontheextentoftheremodeling significantinterestinthecombinationofPTHwithantiresorp- space,asdeterminedbythenumberandactivityofosteoclasts tiveagents.However,someclinicalstudieshavefailedtodem- onbonesurfaces. onstrate an additive effect of PTH plus Aln on bone, at least whenPTHtreatmentwasinitiatedtogetherwithAln(9–11). This outcome might suggest that when remodeling is sup- Parathyroidhormone(PTH),2whenadministeredintermit- pressedbyantiresorptiveagents,theanabolicpotentialofinter- tently, increases bone mineral density (BMD) and improves mittentPTHtherapyisrelatedtotheextentofresidualremod- *ThisworkwassupportedbyAmgenInc. □S Theon-lineversionofthisarticle(availableathttp://www.jbc.org)contains supplementalTableS1. merichuman/mouseRANKL;TRAP,tartrate-resistantacidphosphatase; 1Towhomcorrespondenceshouldbeaddressed:ServiceofBoneDiseases, DMAb,denosumab;OVX,ovariectomized;SC,subcutaneous;Veh,vehicle; Dept.ofRehabilitationandGeriatrics,HUGs,4,rueGabrielle-Perret-Gentil, micro-CT, micro-computed tomography; vBMD, trabecular volumetric 1211 Geneva 14. Tel.: 41-22-382-99-52; Fax: 41-22-382-99-73; E-mail: BMD;pDXA,peripheraldual-energyx-rayabsorptiometry;TBBMD,total [email protected]. bodyBMD;TRACP5b,serumtartrate-resistantacidphosphataseform5b; 2Theabbreviationsusedare:PTH,parathyroidhormone;BMD,bonemineral MS,mineralizingsurface;BS,bonesurface;MAR,mineralappositionrate; density;BMU,basicmulticellullarunit;Aln,alendronate;BMP,bonemor- BFR,boneformationrate;BV/TV,bonevolumefraction;TbN,trabecular phogeneticprotein;M-CSF,macrophagecolonystimulatingfactor;OPG, number;TbTh,thickness;OcS/BS,osteoclastsurface;OcN,osteoclastnum- osteoprotegerin;rhOPG,recombinantformofhumanOPG;huRANKL,chi- ber;Sh,sham. 28164 JOURNALOFBIOLOGICALCHEMISTRY VOLUME285•NUMBER36•SEPTEMBER3,2010 This is an Open Access article under the CC BY license. DenosumabandAlendronateinhuRANKLMice eling space, and to the ability of PTH to stimulate modeling- against RANKL, denosumab (31). In this model, denosumab basedboneformation. wasexpectedtomarkedlyreduceosteoclastnumbersandbone Although still incompletely understood, physiological cou- remodeling, while Aln was expected to inhibit remodeling pling between osteoclasts and osteoblasts occurs through the withoutreducingosteoclastnumbers.IntroducingPTHunder complexactionsofsystemichormones(12,13),factorsreleased theseconditionscouldhelptodeterminewhetherPTHanabo- byosteoclastsand/orfromthebonematrixbyresorption(e.g. lismismorerelatedtoosteoclastnumbersortotheiractivity. TGF-(cid:1),IGF-IandII,andbonemorphogeneticproteins(BMP)) However, PTH proved capable of somewhat increasing oste- (14),anddirectcell-to-cellcontactthroughephrinsandephrin oclastnumbersandboneformationparameterseveninpres- receptorsonthecellsurface(15–17).Pharmacologiccoupling enceofhigh-dosedenosumab.Wethereforefurtherexamined ofosteoclaststoosteoblastsisalsoapparentwithintermittent whether PTH could stimulate bone formation and increase PTH administration and some evidence suggests that active bonemassinmicethatwerevirtuallydevoidofosteoclasts,i.e. resorptionplaysanimportantrole(13–16).Forexample,PTH RANK knock-out (RANK(cid:1)/(cid:1)) mice (19, 32). Altogether our hadnoeffectsonbonemicroarchitectureinapatientwithpyc- dataindicatethatPTHisstillcapabletostimulateboneforma- nodysostosis,adiseasecharacterizedbythepresenceofoste- tionwhenboneresorptionisinhibited,however,themagnitude oclasts but suppressed bone resorption due to mutations in ofPTHanaboliceffectsontheskeleton,inparticularitsaddi- cathepsin K (18). Aln might provide a useful tool to test the tiveeffectswithantiresorptives,isdeterminedbythenumberof hypothesis that active bone-resorbing osteoclasts are more osteoclastsonbonesurfaces. importantthanthemerepresenceofosteoclastsforPTHanab- EXPERIMENTALPROCEDURES olism because Aln can potently suppress osteoclast activity withoutnecessarilyreducingosteoclastnumbers(12). MiceandMaterials—FemalehuRANKLmice,maleRANK(cid:1)/(cid:1) Osteoclastformation,activation,andsurvivalrequireRANK mice, and their respective wild-type (WT) littermates (C57/ andarestimulatedbyRANKligand(RANKL)andmacrophage 129/Black Swiss background) were provided by Amgen Inc. colony-stimulating factor (M-CSF). Abundant evidence from (ThousandOaks,CA)(31).RecombinanthumanPTH-(1–34), knock-out and transgenic rodent models have demonstrated Aln (Calbiochem, San Diego, CA), and denosumab (DMAb) thatinhibitionoftheRANK/RANKLpathwayincreasesbone weregenerouslyprovidedbyAmgenInc. mass (19, 20), structure (21), and strength (22). Osteoblasts/ InVivoExperiments—HuRANKLmicewereovariectomized stromal cells also produce osteoprotegerin (OPG), a soluble (OVX) at 18 weeks of age or sham-operated under ketamine decoyreceptorthatpreventsRANKactivationbybindingand (120mg/kg)/xylazine(16mg/kg)anesthesia(Drs.Graub,Bern, sequestering RANKL. OPG negatively regulates osteoclasto- and Provet, Lyssach, Switzerland, respectively). Mice had genesis, promotes apoptosis of mature osteoclasts, and ulti- accesstomousechowRM3(SDS,Betchworth,Surrey,UK)and mately inhibits bone resorption (23). Hence, OPG-deficient wateradlibitumandwereexposedto12hlight,12hdarkcycle. miceexhibitincreasedboneturnoverandreductionsincortical ThedayafterOVX,micewereassignedto3differentgroups and trabecular bone volume, and they develop spontaneous andeachpretreatedgroupreceivedeitherAln(100(cid:2)g/kg,sub- fractures (24). In contrast, overexpression of OPG or soluble cutaneous (sc), twice a week), DMAb (10 mg/kg, sc, twice a RANK-Fc (which functions as a RANKL inhibitor) in trans- week),orvehicle(Veh,PBS)for4weeks(n(cid:2)6–8/group).The genicrodentsinhibitedboneremodelingandresultedinhigh denosumabdosingregimenwasselectedforitsabilitytoover- bone mass (23, 25). Concomitant administration of OPG-Fc comepotentialimmuneresponsesintheseimmunocompetent andPTHinrodentshasshownadditiveeffectsonBMD(26,27) micetowardthefullyhumandenosumabprotein.Ineachpre- despiteevidenceofbluntingofboneformationrelativetoPTH treatedgroup,micewerethenfurtherassignedtoPTH(1–34) alone(28).Importantly,afteraccountingforitsantiremodeling (80 (cid:2)g/kg/d, sc) or Veh for 4 weeks (n (cid:2) 6–8/group) while effect, OPG did not reduce the magnitude by which PTH continuing their original treatments. Sham mice (n (cid:2) 6) increasedtheboneformationmarkerosteocalcin(29).More- receivedVehfor8weeks(Fig.1).Micereceivedascinjectionof over, OPG did not directly inhibit differentiation of cultured calcein(20mg/kg,Sigma)at7and2daysbeforesacrifice,then osteoblasts (28). These observations suggest that RANKL were sacrificed at week 8, and blood was collected for serum inhibitorsmayrestrictPTHanabolismthroughtheireffectson measurements.Lumbarspineandtherightfemurwereexcised bone remodeling rather than on bone-forming cells them- formicro-computedtomography(micro-CT)analysisandthe selves. The effects of antiresorptives and PTH might further tibiae processed for histomorphometry. The left femur was dependonthesequenceanddurationofexposuretotheagents. excised and frozen at (cid:1)20°C for biomechanical testing. The PTHcombinedwithAlninrodentshasgenerallyledtoadditive animalprotocolforhuRANKLmicewasapprovedbytheEth- effects on bone mass and structure, whereas bone formation icalCommitteeoftheUniversityofGenevaSchoolofMedicine parameters appear suppressed relative to PTH alone (27, 28, andStateofGenevaVeterinarianOffice. 30).Theseresultsfurtherhighlightthelackofclarityregarding Male RANK(cid:1)/(cid:1) mice and WT littermates, aged to 7 to 8 theroleofosteoclastsforPTHanaboliceffectsonbone. weeksofage,weretreatedbydailyscinjectionfor14dayswith Were-evaluatedtheroleofosteoclastsandboneresorption eitherVehorwithhumanPTHat0.4mg/kg/day(n(cid:2)9–10/ onintermittentPTHeffectsontheskeletonin2mousemodels. genotype/group).RANK(cid:1)/(cid:1)mice,whichareseverelyosteope- The first was a knock-in mouse model expressing a chimeric troticandtoothless,weremaintainedonapowderedversionof human/mouseRANKLprotein(huRANKL),whichwasdevel- standard mouse chow (Harlan Teklad, Madison, WI). Mice opedtorespondtotheneutralizinghumanmonoclonalIgG2 weresacrificedafter2weeksoftreatmentandthedistalfemur SEPTEMBER3,2010•VOLUME285•NUMBER36 JOURNALOFBIOLOGICALCHEMISTRY 28165 DenosumabandAlendronateinhuRANKLMice Biochemical Determinations—Serum tartrate resistant acid phosphataseform5b(TRACP5b),osteocalcin,andPTHwere measured by ELISA according to manufacturer instructions (IDSLtd,UK;BiomedicalTechnologiesInc.,Stoughton,MA; and Immunotopics Inc, San Clemente, CA, respectively). In RANK(cid:1)/(cid:1) mice, osteocalcin was measured by a Luminex microbeadassay(Milipore/Linco,St.Charles,MO). Biomechanical Testing—The night before mechanical test- ing,femurswerethawedslowlyat7°Candthenmaintainedat room temperature. The length of the femur was measured using a digital caliper and the middle of the shaft was deter- mined.Thefemurwasplacedinthematerialtestingmachine on2supportsseparatedbythedistanceof9.9mm,andload wasappliedtothemiddleoftheshaft,thuscreatinga3-point bending test. Between the different steps of preparation, each specimen was kept immersed in physiological solution. Themechanicalresistancetofailurewastestedusingaservo- controlled electromechanical system (Instron 1114, Instron Corp.,HighWycombe,UK).Thecross-headspeedforalltests was2mm/minandtheupperrollercontactedthefemuratthe FIGURE 1. Schematic representation of the experimental design. anteriormid-diaphysiswiththeloaddirectionperpendicularto huRANKLmicewereovariectomized(OVX)ornot(Sham)at18weeksofage themedio-lateraldiameter.Bothdisplacementandloadwere andassignedtoreceiveeitherVeh,Aln,orDMAbtreatment.After4weeks, micewerefurtherassignedtointermittentPTH(1–34)(80(cid:2)g/kg/day)orVeh recorded. Maximal load (N) and stiffness (slope of the linear administration,inadditiontoAln,DMAb,orVeh. part of the curve representing elastic deformation [N/mm]), were calculated from the load-displacement curves. Ultimate washarvestedformicro-CTanalysisoftrabecularvolumetric stress((cid:3),MPa)andYoung’smodulus(E,modulusofelasticity; u BMD (vBMD). The protocol and procedures for RANK(cid:1)/(cid:1) MPa)weredeterminedbytheequationspreviouslydescribed micewereapprovedbytheInstitutionalAnimalCareandUse byTurnerandBurr(35). CommitteeofAmgenInc. Histology—Tibiae of huRANKL knock-in mice were BoneMineralDensityandBoneMorphology—InhuRANKL embeddedinmethylmethacrylate(Merck),and5-(cid:2)msagit- mice,totalbody,spine,andfemoralBMD(g/cm2)wasevalu- tal sections of the proximal third of the tibiae were stained ated in vivo using dual-energy x-ray absorptiometry (DXA, and histomorphometric measurements were performed on PIXImus, GE Lunar, Madison, WI). Total body BMD (TB the secondary spongiosa, as previously described (36). To BMD)valuesweresimilarbetweengroupsatbaseline,anddata measure dynamic indices of bone formation, 8 (cid:2)m sagittal oftotalbody,spine,andfemoralBMDareexpressedaspercent sections were cut and mounted unstained for evaluation of changefrombaseline.Weassessedtrabecularandcorticalbone the calcein labels, as previously described (36). In the architectureatweek8usingmicro-CT((cid:2)CT40,ScancoMedi- DMAb-treatedmice,nosingle-ordouble-labeledbonesur- calAG,Basserdorf,Switzerland),employinga12(cid:2)misotropic faceswerepresentinthesectionsandthedifferentparame- voxelsize.Specifically,trabecularbonearchitectureaswellas tersofboneformationweredescribedas“notdetectable”in corticalwidth(asthemeanofthewholesection)wereevaluated Table2.Theseparametersofboneformationincludedmin- at the 5th lumbar vertebra and distal femoral metaphysis, eralizingsurfaces(MS/BS),mineralappositionrate(MAR), whereascorticalbonemorphologywasevaluatedatthefemoral andBFR. mid-shaft,aspreviouslydescribed(33,34). InRANK(cid:1)/(cid:1)mice,vBMDwasdeterminedusingadesktop Statistical Analysis—For the huRANKL mice, a 2-factor analysisofvariancewasusedtoassesstheeffectofAln/DMAb micro-CTsystem(GEeXploreLocusSPSpecimenScanner;GE and PTH on skeletal morphology. As appropriate, post-hoc Healthcare). The whole left femur was scanned and images reconstructedwitha13(cid:2)misotropicvoxelsize.Contourswere testing was performed using Fisher’s Protected Least Squares Difference(PLSD).Alltestswere2-tailed,withdifferencescon- drawntoselectatrabecularregion(10%offemurlength)begin- sideredsignificantatp(cid:3)0.05.Dataarepresentedasmeans(cid:4) ning at 30% of the femur length from the distal end in RANK(cid:1)/(cid:1) mice and 15% in WT mice. These regions were S.E.ofthemean(S.E.),unlessotherwisenoted. selected to avoid the distal growth plate, which was wider in FortheRANK(cid:1)/(cid:1)mousestudy,1-wayANOVAfollowedby RANK(cid:1)/(cid:1)mice,andthereforepenetratedmoredeeplyintothe Dunnett’stestwasusedtocomparedifferencesbetweenVeh- metaphysis. Cortical regions (10% of femur length) were also treatedWTversusRANK(cid:1)/(cid:1)knock-outmice,andtocompare selecteddistalfromthefemurmidpointforassessmentofcor- differences between Veh- and PTH-treated mice within the ticalvBMD,aspreviouslydescribed(22).Becauseofmajordif- samegenotype.TestswererunusingJMPsoftware(SASInsti- ferencesinBMDbetweenthegenotypes,trabecularvBMDwas tute, Cary, NC), with p (cid:3) 0.05 used to determine significant measuredwithoutapplyingthresholds. differences. 28166 JOURNALOFBIOLOGICALCHEMISTRY VOLUME285•NUMBER36•SEPTEMBER3,2010 DenosumabandAlendronateinhuRANKLMice TABLE1 EffectsofAln,DMAb,AlnplusPTH,orDMAbplusPTHonbonemassandvertebralandfemoralmicroarchitectureinhuRANKLmice Inparenthesesarethenumberofmicepergroup.Conndens,connectivitydensity. OVX Sham(6) NoPTH PTH Veh(6) Aln(8) DMAb(8) Veh(6) Aln(7) DMAb(8) BMDchange(%,week8-week0) Totalbody (cid:1)1.0(cid:4)1.2 (cid:1)4.1(cid:4)1.9 2.9(cid:4)1.0b 8.1(cid:4)1.1b,c 1.0(cid:4)0.8d 9.2(cid:4)1.2d,f 5.2(cid:4)1.9f,g Lumbarspine (cid:1)6.8(cid:4)3.1 (cid:1)12.5(cid:4)5.6 7.6(cid:4)4.0b 7.8(cid:4)4.5b (cid:1)12.1(cid:4)2.5 11.6(cid:4)4.3f 6.3(cid:4)4.1f Femoralshaft (cid:1)3.2(cid:4)1.3 (cid:1)1.6(cid:4)2.8 3.4(cid:4)1.9 5.5(cid:4)1.8b (cid:1)6.1(cid:4)1.1 4.1(cid:4)2.0f 4.8(cid:4)3.6f Vertebraltrabecularbone BV/TV(%) 21.8(cid:4)1.6 15.7(cid:4)1.3a 22.6(cid:4)0.7b 23.7(cid:4)1.6b 18.7(cid:4)1.2 28.8(cid:4)1.8d,f 24.1(cid:4)1.9f,g TbN(/mm) 3.4(cid:4)0.1 2.9(cid:4)0.2a 3.6(cid:4)0.2b 3.7(cid:4)0.2b 3.0(cid:4)0.1 3.6(cid:4)0.1f 3.6(cid:4)0.1f TbTh((cid:2)m) 62.5(cid:4)2.9 55.2(cid:4)1.7a 59.0(cid:4)0.9 62.5(cid:4)2.b 59.0(cid:4)0.8 69.3(cid:4)1.5d,f 62.9(cid:4)2.5g Conndens(mm(cid:1)3) 84.1(cid:4)4.1 89.0(cid:4)9.4 85.2(cid:4)6.4 97.2(cid:4)6.5 112.6(cid:4)15.9 81.3(cid:4)5.4f 98.2(cid:4)9.7 Corticalwidth((cid:2)m) 95.3(cid:4)1.7 83.3(cid:4)2.1a 100.3(cid:4)2.1b 123.4(cid:4)5.8b,c 92.1(cid:4)2.0 114.0(cid:4)3.5d,f 114.5(cid:4)6.3f Distalfemurtrabecularbone BV/TV(%) 5.0(cid:4)0.8 1.3(cid:4)0.3a 4.4(cid:4)0.5 8.5(cid:4)1.4b,c 2.3(cid:4)0.4 8.6(cid:4)1.4d,f 7.0(cid:4)1.3f TbN(/mm) 2.7(cid:4)0.2 1.6(cid:4)0.1a 2.8(cid:4)0.1b 3.9(cid:4)0.4b,c 1.9(cid:4)0.2 3.6(cid:4)0.3d,f 3.6(cid:4)0.4f TbTh((cid:2)m) 42.4(cid:4)1.9 37.4(cid:4)2.3a 38.5(cid:4)0.9 43.2(cid:4)1.3b,c 42.1(cid:4)0.9d 45.3(cid:4)0.8d 40.8(cid:4)1.5g Conndens(mm(cid:1)3) 25.1(cid:4)6.6 2.5(cid:4)0.7 30.6(cid:4)4.6 66.8(cid:4)14.3b,c 7.4(cid:4)1.6 72.4(cid:4)19.2d,f 52.0(cid:4)12.3f Corticalwidth((cid:2)m) 133.4(cid:4)3.6 108.7(cid:4)5.4a 122.3(cid:4)3.3b 131.8(cid:4)5.4b 117.4(cid:4)3.4 126.2(cid:4)3.2 129.4(cid:4)4.7f Femoralcorticalbone Crosssectionalarea(mm2) 0.272(cid:4)0.005 0.260(cid:4)0.006 0.279(cid:4)0.008 0.283(cid:4)0.014 0.279(cid:4)0.007 0.286(cid:4)0.006 0.272(cid:4)0.007 Bonearea(mm2) 0.164(cid:4)0.002 0.140(cid:4)0.002a 0.160(cid:4)0.005b 0.153(cid:4)0.003b 0.151(cid:4)0.003d 0.167(cid:4)0.004f 0.157(cid:4)0.003 Medullaryarea(mm2) 0.108(cid:4)0.003 0.120(cid:4)0.005 0.119(cid:4)0.005 0.130(cid:4)0.013 0.128(cid:4)0.005 0.119(cid:4)0.003 0.114(cid:4)0.005 Corticalwidth((cid:2)m) 274(cid:4)1 239(cid:4)4a 262(cid:4)7b 251(cid:4)5 246(cid:4)4 267(cid:4)6f 262(cid:4)5f ap(cid:3)0.05comparedwithsham. bp(cid:3)0.05comparedwithOVXVeh. cp(cid:3)0.05comparedwithOVXAln. dp(cid:3)0.05comparedwithnon-PTHinthesamepretreatmentgroup. fp(cid:3)0.05comparedwithOVXVeh-PTH. gp(cid:3)0.05comparedwithOVXAln-PTH. RESULTS contrast,PTHexertednoadditionaleffectsonmicroarchitec- Effects of Aln, DMAb, and Combination with PTH on Bone turewhencombinedwithDMAb(Table1andFig.2,B–E). MassandMicroarchitectureinOVXhuRANKLMice—InOVX Effects of Aln, DMAb, and Combination with PTH on Bone huRANKLmice,AlnandDMAbbothpreventedbonelossat StrengthinOVXhuRANKLMice—Treatmenteffectsonbone thelumbarspineandfemur,althoughDMAbcausedasignifi- strength were further evaluated at the midshaft femur by cantlygreaterincreaseinTBBMDcomparedwithAlnafter4 3-pointbendingtests.PTHwasmosteffectiveatimprovingthe and8weeks(Table1andFig.2A).OVXdecreasedcancellous momentofinertiaandthecorticalstructuralproperties,suchas bonevolumefraction(BV/TV),trabecularnumber(TbN)and stiffness,comparedwithVeh(supplementalTableS1).Alnand thickness (Tb Th), and cortical width at the distal femur and DMAb both prevented the decrease in Young’s modulus but vertebrae,aswellascorticalwidthatthemidshaftfemur(p(cid:3) didnotimprovecorticalstiffnesscomparedwithVeh(Fig.2D 0.05 compared with sham). Aln and DMAb maintained bone andsupplementalTableS1).TheeffectsofPTHonthestruc- microstructureattheseskeletalsites(Table1andFig.2,B–E), turalproperties(maximalloadandstiffness)weremaintained but DMAb caused significantly greater increases than Aln in in combination with Aln, although they were not better than microarchitecturalparametersatthedistalfemurandvertebral PTHalone.InDMAb-treatedmice,PTHshowedanon-signif- corticalthickness(Table1andFig.2B). icanttrendtoimprovefemurstrengthcomparedDMAbalone DailyPTHadministeredbetween4and8weekspost-OVX (Fig. 2D and supplemental Table S1), suggesting that PTH improved TB BMD compared with OVX, but did not impact effects on bone-modeling surfaces could be maintained (see BMDatthelumbarspineorfemoralshaft.Incombinationwith below,RANK(cid:1)/(cid:1)mice). Aln,PTHmarkedlyimprovedBMDatallsitesandwassignifi- BiochemicalMarkersofBoneTurnoverandTheirRelation- cantlybetterthanAlnalone.Incontrast,PTHcombinedwith ship to Bone Mass and Structure in huRANKL Mice—OVX DMAb did not further improve TB BMD compared with increasedTRACP5bandtransientlyincreasedosteocalcincom- DMAbalone(Table1andFig.2A).ComparedwithVeh,PTH paredwithbaseline.ThesechangeswerepreventedbyAln,how- alonesignificantlyincreasedTbThatthedistalfemurandbone everDMAbfurtherdecreasedmarkersofboneturnoverandthere area at the femoral midshaft (Table 1). PTH in combination wasasignificantandpersistentincreaseofserumPTHinDMAb- withAln,comparedwithAlnalone,significantlyincreasedcan- treated mice (Fig. 3A). We next correlated TRACP5b values at cellousboneparametersindistalfemurandvertebrae,includ- sacrifice with parameters of bone mass and structure in OVX ingBV/TVandTbTh(Table1andFig.2B).ThePTHandAln Veh-,Aln-,andDMAb-treatedmice.TBBMD,vertebralBV/TV, combination also improved cancellous and cortical bone andcorticalthickness,aswellasserumPTHlevelswereallne- parameters compared with PTH alone, confirming that the 2 gatively and significantly correlated with post-treatment treatments exerted additive effects (Table 1 and Fig. 2B). In TRACP5b levels (Fig. 3B). This indicates that the greater the SEPTEMBER3,2010•VOLUME285•NUMBER36 JOURNALOFBIOLOGICALCHEMISTRY 28167 DenosumabandAlendronateinhuRANKLMice FIGURE2.BMD,bonemicroarchitecture,andstrengthinOVXhuRANKLmicetreatedwithAlnorDMAb,withorwithoutPTH.A,effectsofthedifferent notedtherapiesonTBBMD.Dataareexpressedasthepercentagechangefrombaseline(0week),DXA((cid:4)S.E.).Vertebralandfemoralcancellous(B)andcortical (C)microarchitectureatthemidshaftfemur,andfemoralstiffness(D)inOVXhuRANKLmicetreatedwithAlnorDMAb,withorwithoutPTH,for8weeks post-OVX.E,twodimensionalmicro-CTrepresentativeimagesofthefemoralmetaphysisanddiaphysisforeachtreatmentgroup.a,p(cid:3)0.05comparedwith Sham;b,p(cid:3)0.05comparedwithOVXVeh;c,p(cid:3)0.05comparedwithOVXAln;d,p(cid:3)0.05comparedwithnon-PTHinthesamepretreatmentgroup;e,p(cid:3)0.05 comparedwithbaseline;f,p(cid:3)0.05comparedwithOVXVeh-PTH;g,p(cid:3)0.05comparedwithOVXAln-PTH. suppressionofosteoclastsandboneresorption,thebetterthe Veh,buthadnosignificanteffectsonMAR(Table2).DMAb bonemassandstructureinamonotherapysetting. suppressed all bone forming indices, as shown by the lack of TheadditionofintermittentPTHincreasedosteocalcininall single- or double-labeled surfaces. Intermittent PTH alone groupscomparedwiththeothernon-PTHtreatmentgroups, clearlyincreasedbone-formingindices,aswellasincombina- reachingsignificanceintheDMAb-PTHversusDMAbgroup. tionwithAlnorDMAb.Inparticular,MARwassimilarinthe However,meanosteocalcinlevelsremainedsignificantlylower DMAb-PTH and Aln-PTH groups, and only 25–35% lower inDMAb-PTHthanintheVeh-PTHorAln-PTHgroups. compared with PTH alone. In contrast, PTH effects on BFR TreatmentEffectsonBoneRemodelingIndicesinhuRANKL were more markedly affected by the antiresorptives, as it Mice—Asevaluatedbyhistomorphometryofcancellousbone remained40%lowerinpresenceofAln,and75%lowerinpres- attheproximaltibiametaphysis,osteoclastsurface(OcS/BS), ence of DMAb, compared with PTH alone (Table 2 and Fig. andosteoclastnumber(OcN)weredecreasedwithDMAband 4A). BFR however was not correlated to osteoclast surfaces/ increasedwithAln(Table2).TheadditionofPTHresultedina numbersinthePTH-treatedgroups(Fig.4B),suggestingthat significant increase in OcS/BS and OcN in DMAb-treated osteoclasts were not the most important determinants of the mice, although these values remained lower than in the Aln- bone-formingresponsetoPTH. treatedgroup.Boneformingindicesalsodifferedbetweenanti- However, PTH had induced the appearance of some oste- resorptives. Aln decreased MS/BS and BFR compared with oclastsinDMAb-treatedmice,whichmighthavecontributed 28168 JOURNALOFBIOLOGICALCHEMISTRY VOLUME285•NUMBER36•SEPTEMBER3,2010 DenosumabandAlendronateinhuRANKLMice tothePTHanabolismtheyexhibitedbyhistomorphometryand EffectsofIntermittentPTHinRANK(cid:1)/(cid:1)Mice—Forthispur- byserumosteocalcin.Wethereforeexaminedthepotentialfor posewetreatedosteoclast-lessRANK(cid:1)/(cid:1)miceandWTcon- PTHanabolisminRANK(cid:1)/(cid:1)mice,whicharevirtuallydevoid trolswithhigh-dosePTH(400(cid:2)g/kg/d)for2weeks.PTHsig- ofosteoclastsevenwhenstimulatedwithPTH(31). nificantly increased osteocalcin and TRACP5b levels in WT mice(Fig.5,AandB).InRANK(cid:1)/(cid:1) mice, TRACP5b levels were 91% lowerthaninWTmiceanddidnot change with PTH. Nevertheless, PTHincreasedserumosteocalcinin RANK(cid:1)/(cid:1) mice similarly to WT, indicating that increased osteocal- cininducedbyPTHcanoccurinde- pendently of osteoclasts or bone resorption. Distal femur trabecular vBMD was markedly increased in Veh-treated RANK(cid:1)/(cid:1) mice com- pared with Veh-treated WT con- trols(Fig.5C).Twoweeksofinter- mittent PTH increased trabecular vBMDby66%inWTandby15%in RANK(cid:1)/(cid:1) mice compared with Veh.PTHalsosignificantlyincreased cortical vBMD in the femoral mid- shaftofRANK(cid:1)/(cid:1)mice,from900.0 mg/cm3 (Veh controls) to 981.5 mg/cm3 (p (cid:3) 0.05). In contrast, PTHcausedanexpectedandmod- est reduction in cortical vBMD in WT mice, from 1086.8 mg/cm3 (Veh)to1061.7mg/cm3(non-signif- icant). Representative micro-CT imagesoftrabecularbonefromthe distal femoral metaphysis of each groupareshowninFig.5D. DISCUSSION FIGURE3.BoneserummarkersofremodelingandcorrelationtobonemassandstructureinhuRANKL micetreatedwithAlnorDMAb,withorwithoutPTH,8weekspost-OVX.A,serumTRACP5b,osteocalcin, In this study, we examined the andPTHweremeasuredattime0,week4,andweek8(sacrifice).B,correlationbetweenTRACP5blevels roleofosteoclastsandboneremod- (markerofboneturnover)andbonemass,architecture,andPTH.Allparametersweremeasured8weeks post-OVXinOVXVeh-,Aln-,andDMAb-treatedhuRANKLmice.a,p(cid:3)0.05comparedwithSham;b,p(cid:3)0.05 elingintheboneanabolicresponse comparedwithOVXVeh;c,p(cid:3)0.05comparedwithOVXAln;d,p(cid:3)0.05comparedwithnon-PTHinthesame to intermittent PTH. More specifi- pretreatmentgroup;e,p(cid:3)0.05comparedwithbaseline;f,p(cid:3)0.05comparedwithOVXVeh-PTH;g,p(cid:3)0.05 cally, we evaluated whether PTH comparedwithOVXAln-PTH. TABLE2 BoneremodelingindicesoncancellousbonesurfacesinOVXhuRANKLmicetreatedwithAln,DMAb,AlnplusPTH,orDMAbplusPTH Inparenthesisarethenumberofmicepergroup. OVX Sham(6) NoPTH PTH Veh(6) Aln(8) DMAb(6) Veh(3) Aln(5) DMAb(5) Single-labeledbonesurface/BS(%) 0.928(cid:4)0.074 1.580(cid:4)0.119a 1.150(cid:4)0.111b n.d. 0.653(cid:4)0.080d 0.810(cid:4)0.118d,f 0.497(cid:4)0.149d,g Double-labeledbonesurface/BS(%) 0.652(cid:4)0.088 0.751(cid:4)0.297 0.069(cid:4)0.012b n.d. 1.117(cid:4)0.117d 0.591(cid:4)30.050d,f 0.338(cid:4)0.206d,f MS/BS(%) 22.78(cid:4)2.06 22.84(cid:4)2.82 12.16(cid:4)0.9b n.d. 31.18(cid:4)1.02d 26.24(cid:4)0.83d 11.51(cid:4)4.57d,f,g MAR((cid:2)m/day) 1.71(cid:4)0.17 1.50(cid:4)0.07 1.30(cid:4)0.17 n.d. 1.99(cid:4)0.03 1.50(cid:4)0.24 1.31(cid:4)0.20d,f BFR/BS((cid:2)m3/(cid:2)m2/day) 0.38(cid:4)0.05 0.35(cid:4)0.06 0.16(cid:4)0.03b n.d. 0.62(cid:4)0.01d 0.39(cid:4)0.06d,f 0.17(cid:4)0.08d,f,g OcS/BS(%) 8.87(cid:4)1.28 10.29(cid:4)0.92 16.11(cid:4)1.58b 0.78(cid:4)0.10b,c 8.37(cid:4)0.29 13.056(cid:4)2.05f 5.12(cid:4)1.29d,g OcN(/mm) 50.7(cid:4)6.2 29.2(cid:4)6.7 134.4(cid:4)13.2b 8.1(cid:4)1.3c 35.0(cid:4)3.1 91.4(cid:4)17.8d,f 39.8(cid:4)9.7d,g ap(cid:3)0.05comparedwithsham. bp(cid:3)0.05comparedwithOVXVeh. cp(cid:3)0.05comparedwithOVXAln. dp(cid:3)0.05comparedwithnon-PTHinthesamepretreatmentgroup. fp(cid:3)0.05comparedwithOVXVeh-PTH. gp(cid:3)0.05comparedwithOVX-Veh-Aln. n.d.,notdetectable. SEPTEMBER3,2010•VOLUME285•NUMBER36 JOURNALOFBIOLOGICALCHEMISTRY 28169 DenosumabandAlendronateinhuRANKLMice contrasttotheeffectsofDMAb,Alnmonotherapyresultedina paradoxicandsignificantincreaseinosteoclastsurfacesandan expected reduction in bone formation parameters that was consistentwiththediminutionofboneremodeling.Histologic andbiochemicalremodelingparametersweremoresuppressed withDMAbthanwithAln,andBMDincreasesweregenerally greaterwithDMAbthanwithAln.Thesefindingsareconsis- tent with previous head-to-head comparisons in human and non-humanprimatestreatedwiththeseagents(40,41). In huRANKL mice, administration of intermittent PTH increasedBMD,corticalbonearea,andstiffness,inadditionto itseffectsonBFRatcancellousbonesurfaces,comparedwith OVX. When PTH was added to Aln, it still increased bone- formingindicesandexertedclearadditiveeffectsonBMDand microarchitecture,consistentwithpreviousdata(27,28).Some clinical trials have reported that in patients treated with Aln, beforeaswellasduringexposuretoPTH,thecombinedther- apywassuperiortoAlnalone(42,43).However,ithasnotbeen demonstratedthattheBMDresponsetoPTHplusantiresorp- tivesissuperiortoPTHaloneinhumans.Whencombinedwith DMAb,PTHwasabletosomewhatreactivateosteoclastogen- esis,asshownbyanincreaseofosteoclastnumbersoncancel- lous bone. PTH also increased bone-forming indices in the presence of DMAb, indicating that the suppression of bone turnover with DMAb was at least partially reversible, even when DMAb treatment was continued at a dose level that greatlyexceedsthoseusedclinically.Mostimportantly,PTH- stimulated MAR reached similar levels in presence of DMAb andAln,despitelargedifferencesinthenumberofosteoclasts, indicatingthatstimulationofosteoblastactivityislargelyinde- pendent of osteoclast number and activity. However, MS/BS andBFRremainedmarkedlyreducedwhenPTHwasadminis- teredwithDMAbcomparedwithintermittentPTHalone,indi- cating that a critical reduction in osteoclast numbers, and therebyofremodelingsurfaces,maycompromisetheextentof FIGURE4.TibialhistologyforhuRANKLmice.A,representativehistologic images(sagittalsection)oftibialcancellousboneofeachtreatmentgroup PTH anabolic effects, which could explain why PTH and aftertreatmentwithAlnorDMAb,withorwithoutPTH,8weekspost-OVX. DMAb failed to exert additional effects on bone mass and B,correlationbetweencancellousOcS/BSversusBFRforPTH-treatedanimals. microarchitecture. There are other potential explanations for the lack of an couldexertadditiveeffectsonbonemassinthemodelofthe additiveBMDeffectwhenPTHwasaddedtoDMAb-treated OVX huRANKL mouse treated with the potent osteoclast animals.The4-weekperiodofPTHco-administrationwith inhibitor DMAb. At the doses tested in this study, DMAb DMAb might not have been sufficient to observe additive causedgreatersuppressionofboneturnoverthanAln,resulting effectsonBMD.InanagedOVXratstudy,theadditiveeffectof infurtherimprovementsinBMDandcancellousmicroarchi- PTHplusOPGonvertebralBMDcomparedwithPTHalone tecture.Inturn,intermittentPTHexertedadditiveeffectswith wasnotapparentuntil3monthsaftertheirco-administration Aln,butnotwithDMAb. (28).However,4weekswasadequatetoobserveadditiveeffects DMAbandAlnexerttheirantiresorptiveactionthroughdif- ofPTHplusAlnonBMDundertheconditionsofthecurrent ferent mechanisms. DMAb selectively binds to RANKL and study.AnotherpossibilityrelatestotheDMAbdosingregimen inhibitsosteoclast-mediatedboneresorption,osteoclastmatu- (10mg/kg,twiceweekly),whichgreatlyexceedsthedoseused ration, and survival, while Aln binds to the mineralized bone clinically for bone loss (1 mg/kg, twice yearly). This DMAb matrix and decreases osteoclast activity, without necessarily dosingregimen,whichwasusedtoensureadequatedrugexpo- reducingthenumberofosteoclasts(37–39).TreatmentofOVX sure in the face of potential immune responses to this fully huRANKL mice with DMAb alone was associated with a humanprotein,mightlimittheabilityofthesefindingstopre- markedreductionofosteoclastsurfacesandwithhistological dictclinicaloutcomesinhumans.Finally,animalspre-treated parametersofboneformationthatwerebarelydetectable.The withDMAbhadhigherBMDthanthosepretreatedwithAlnat latter finding indicates that remodeling is the predominant the time PTH was introduced, which could limit the former physiologicalformofboneturnoverinthesemiceatthisage, grouppotentialforfurtherBMDincrementswithPTH.Con- and that remodeling was markedly suppressed by DMAb. In sistentwiththisnotion,PTHwasabletoincreaseBMDmuch 28170 JOURNALOFBIOLOGICALCHEMISTRY VOLUME285•NUMBER36•SEPTEMBER3,2010 DenosumabandAlendronateinhuRANKLMice thelocalinjectionofanevenhigher concentration ((cid:5)1,400 (cid:2)g/kg/day) of parathyroid hormone-related protein (PTHrP), which activates the same receptor as PTH, was unabletoinducetheappearanceof any osteoclasts in the calvaria of RANK(cid:1)/(cid:1)mice(32).Inthecurrent study,short-termadministrationof high-dose PTH (400 (cid:2)g/kg/day) resulted in an increase of serum osteocalcinthatwassimilartoWT mice, indicating that both geno- types could exhibit bone-forming responsestoPTH. PTH-mediated increases in se- rum osteocalcin in aged OVX rats were previously shown to be un- affected by co-administration of recombinant OPG (29), suggesting that this phenomenon is not re- strictedtoyoungosteopetroticmice and does not require high doses of PTH. Also, PTH significantly FIGURE5.Effectsof2weeksofintermittentPTHtreatmentonserumTRACP5b,osteocalcin,andtrabe- cularBMDinWTandRANK(cid:1)/(cid:1)mice.A,serumTRACPinWTandRANK(cid:1)/(cid:1)miceinresponsetoPTH.B,serum increased trabecular vBMD in osteocalcininPTH-treatedWTandRANK(cid:1)/(cid:1)mice.C,effectsofPTHontrabecularvBMDinthedistalfemur RANK(cid:1)/(cid:1)mice,eventhoughtheir metaphysisofWTandRANK(cid:1)/(cid:1)mice.D,representativemicro-CTimagesofthedistalfemurmetaphysisofWT andRANK(cid:1)/(cid:1)micetreatedwithVehorwithintermittentPTH.Selectedimagesrepresentthemediantrabec- baseline trabecular vBMD was ularbonevolumefractionvaluefromeachgroup.a,p(cid:3)0.05comparedwithVeh-treatedWT;b,p(cid:3)0.05 already extremely high. This high comparedwithVeh-treatedRANK(cid:1)/(cid:1). bone mass phenotype probably explainswhytheBMDresponseto more in WT mice compared with osteopetrotic RANK(cid:1)/(cid:1) PTH in RANK(cid:1)/(cid:1) mice was somewhat lower than the mice. Nonetheless, the overall data are consistent with the response observed in WT controls, which had much more hypothesis that trabecular bone remodeling is an important marrowspaceavailablefornewboneformation.Theosteo- attributeofPTHanabolisminhuRANKLmice. calcin and BMD responses to PTH in RANK(cid:1)/(cid:1) mice If remodeling is indeed important for PTH anabolism, it is occurred despite very low basal levels of serum TRACP5b, importanttounderstandwhy,undercertainconditions,PTHis and despite a complete lack of response of this osteoclast capableofrobustlyincreasingBMDinmiceorratsco-treated marker to PTH. It is also interesting to note that PTH also withpotentantiresorptivessuchasAln(28,29,30)orOPG(28, increasedcorticalvBMDinRANK(cid:1)/(cid:1)mice,butnotinWT 30).Thisisaparticularlyimportantquestionbecausetheaddi- mice.IncreasedcorticalBMDisnottypicallyobservedwith tiveeffectsofPTHandAlnonvertebralBMDinrodentsstands PTH administration, primarily due to increases in oste- incontrasttothebluntedvertebralBMDresponsetoPTHplus oclast-mediatedcorticalporosity(44).Henceseverallinesof AlnversusPTHaloneinhumanstudies(9,10).Onehypothesis evidenceindicatethatboneformationcouldbestimulatedin isthatmiceandratshaveagreatercapacitythanhumansfor RANK(cid:1)/(cid:1) mice in the absence of basal or stimulated bone PTH stimulation of modeling-based bone formation, which resorption.ThefactthatPTHincreasedBMDinRANK(cid:1)/(cid:1) occursintheabsenceofpriorosteoclastactivation. micebutnotinDMAb-treatedhuRANKLmicecouldrelate TheextenttowhichPTHcanincreaseBMDinmiceviapure tothehigherdoseofPTH. modeling-basedboneformationwasexaminedbyadminister- Erben showed that in young rats, most of the cancellous ingPTHtoRANK(cid:1)/(cid:1)mice,whicharedevoidofosteoclastsand bone forming sites in the untreated condition were model- arethereforeincapableoftrueboneremodeling(32).Ashort ing-based(4).Comparedwithyoungratsormice,theextent (2-week)durationwaschosentominimizehandlingandstress of modeling-based bone formation in the untreated adult totheseverelyosteopetroticandtoothlessRANK(cid:1)/(cid:1)mice.A humanosteoporoticskeletonislikelytobemuchlower(45). high dose of PTH was used to produce a sufficiently robust The extent to which PTH can stimulate modeling-based BMDresponseofWTmicetoPTH,overthisbrieftreatment bone formation in this population is unclear. Current evi- period,todeterminewhetherornotRANK(cid:1)/(cid:1)miceweretruly denceindicatesthatthisextentisverylowinthesteady-state resistanttoPTH.Itwasnotpossibletoperformreliablehisto- situation after long-term PTH therapy (5), but could be morphometryontrabecularsurfacesinRANK(cid:1)/(cid:1)mice,dueto higher during the earlier phase of treatment (6). Based on theirlackofmarrowspaceandabsenceofclearlydefinedtra- theseobservationsandthecurrentresults,itseemsreason- becular surfaces (32). However, it was previously shown that abletohypothesizethattheneteffectsofPTHontrabecular SEPTEMBER3,2010•VOLUME285•NUMBER36 JOURNALOFBIOLOGICALCHEMISTRY 28171 DenosumabandAlendronateinhuRANKLMice BMDinpostmenopausalwomenreceivingDMAbwouldbe Acknowledgments—WethankFannyCavatandMadeleineLachize greatestintheearlyperiodofconcomitanttherapy,priorto ofGeneva,andFrankAsuncion,DeniseDwyer,andSeanMoronyof the refilling of remodeling space (i.e. short-lived). Over the Amgen Inc. for their skillful technical expertise. Erica Rockabrand, long term, the overall BMD response to PTH in DMAb- PhDofAmgenInc.providedassistancewitheditingandformatting. treatedsubjectsmightbedeterminedprimarilybythecapac- ityofPTHtopromotetrabecularmodeling-basedbonefor- REFERENCES mation, and hence remain quite modest. At cortical sites, antiresorptiveco-therapywithAlndoesnotappeartosignif- 1. Cosman,F.(2008)Curr.Opin.Endocrinol.DiabetesObes.15,495–501 icantly blunt PTH-mediated BMD increases (9, 10). This 2. Girotra,M.,Rubin,M.R.,andBilezikian,J.P.(2006)Rev.Endocr.Metab. Disord.7,113–121 outcomemightreflectthepotentialforAlntoreducecorti- 3. Hodsman,A.B.,andSteer,B.M.(1993)Bone14,523–527 calporosityandremodeling-basedcorticalboneformation, 4. Erben,R.G.(1996)Anat.Rec.246,39–46 whichcouldhaveoffsettingeffectsoncorticalBMDinthat 5. Ma, Y. L., Zeng, Q., Donley, D. W., Ste-Marie, L. G., Gallagher, J. C., population. Similarly, DMAb significantly reduced cortical Dalsky,G.P.,Marcus,R.,andEriksen,E.F.(2006)J.BoneMiner.Res.21, bone remodeling and cortical porosity in adult OVX cyno- 855–864 6. Lindsay,R.,Cosman,F.,Zhou,H.,Bostrom,M.P.,Shen,V.W.,Cruz,J.D., molgus monkeys (46) and RANKL inhibition by OPG Nieves,J.W.,andDempster,D.W.(2006)J.BoneMiner.Res.21,366–373 reduced cortical porosity in mice with constitutively active 7. Sato,M.,Westmore,M.,Ma,Y.L.,Schmidt,A.,Zeng,Q.Q.,Glass,E.V., PTH receptors (47). The ability of PTH to increase cortical Vahle,J.,Brommage,R.,Jerome,C.P.,andTurner,C.H.(2004)J.Bone vBMD in RANK(cid:1)/(cid:1) mice, in which bone resorption was at Miner.Res.19,623–629 undetectablelevels,suggeststhatintermittentPTHtherapy 8. Dempster,D.W.,Parisien,M.,Silverberg,S.J.,Liang,X.G.,Schnitzer,M., mighthavepositiveeffectsoncorticalBMDinpatientsco- Shen,V.,Shane,E.,Kimmel,D.B.,Recker,R.,Lindsay,R.,andBilezikian, J.P.(1999)J.Clin.Endocrinol.Metab.84,1562–1566 treatedwithDMAb. 9. Black,D.M.,Greenspan,S.L.,Ensrud,K.E.,Palermo,L.,McGowan,J.A., Insummary,DMAbreducedboneremodelingandincreased Lang,T.F.,Garnero,P.,Bouxsein,M.L.,Bilezikian,J.P.,andRosen,C.J. BMDinOVXhuRANKLmicetoagreaterextentthanAlnatthe (2003)N.Engl.J.Med.349,1207–1215 dosestested.WhileBMDtendedtobeincreasedbytheadditionof 10. Finkelstein,J.S.,Hayes,A.,Hunzelman,J.L.,Wyland,J.J.,Lee,H.,and PTHtreatmentinanimalspretreatedwithAln,thisadditiveeffect Neer,R.M.(2003)N.Engl.J.Med.349,1216–1226 wasnotapparentinmicepre-treatedwithDMAb.Theseresults 11. Finkelstein,J.S.,Leder,B.Z.,Burnett,S.M.,Wyland,J.J.,Lee,H.,delaPaz, A.V.,Gibson,K.,andNeer,R.M.(2006)J.Clin.Endocrinol.Metab.91, are consistent with the hypothesis that the capacity for bone 2882–2887 remodeling,andtheavailabilityofremodelingspace,aregenerally 12. Martin,T.J.,Quinn,J.M.,Gillespie,M.T.,Ng,K.W.,Karsdal,M.A.,and importantattributesofPTHanabolism.Whetherthisremodeling Sims,N.A.(2006)Ann.N.Y.Acad.Sci.1068,458–470 capacityisadvantageousintermsoftheoverallpotentialforBMD 13. Henriksen,K.,Neutzsky-Wulff,A.V.,Bonewald,L.F.,andKarsdal,M.A. gainsinresponsetoPTHisunclear,asBMDinanimalstreated (2009)Bone44,1026–1033 14. Martin,T.J.,andSims,N.A.(2005)TrendsMol.Med.11,76–81 with Aln plus PTH was generally similar to BMD in animals 15. Zhao,C.,Irie,N.,Takada,Y.,Shimoda,K.,Miyamoto,T.,Nishiwaki,T., treatedwithDMAbalone,inwhichremodelingspacewasmini- Suda,T.,andMatsuo,K.(2006)CellMetab.4,111–121 mal.ThefactthatPTHincreasedbonemassinRANK(cid:1)/(cid:1)mice, 16. Allan,E.H.,Ha¨usler,K.D.,Wei,T.,Gooi,J.H.,Quinn,J.M.,Crimeen- whicharedevoidofosteoclastsandwhichshowednoevidenceof Irwin,B.,Pompolo,S.,Sims,N.A.,Gillespie,M.T.,Onyia,J.E.,andMar- bone resorption with PTH administration, demonstrates that tin,T.J.(2008)J.BoneMiner.Res.23,1170–1181 micealsohaveasignificantcapacityforPTH-stimulatedmodel- 17. Pierroz,D.D.,Rufo,A.,Bianchi,E.N.,Glatt,V.,Capulli,M.,Rucci,N., Cavat,F.,Rizzoli,R.,Teti,A.,Bouxsein,M.L.,andFerrari,S.L.(2009) ing-basedboneformation.Thebalanceofmodeling-andremod- J.BoneMiner.Res.24,775–784 eling-based bone formation might ultimately dictate skeletal 18. Chavassieux,P.,AsserKarsdal,M.,Segovia-Silvestre,T.,Neutzsky-Wulff, responsivenesstoPTHandtheabilityofPTHtoincreasebone A.V.,Chapurlat,R.,Boivin,G.,andDelmas,P.D.(2008)J.BoneMiner.Res. massinthepresenceofantiresorptiveco-therapy.ThehuRANKL 23,1076–1083 mousestudyalsoprovidesthefirstevidencethatPTHcansignifi- 19. Dougall,W.C.,Glaccum,M.,Charrier,K.,Rohrbach,K.,Brasel,K.,De cantlyincreasehistologicparametersofboneresorptionandbone Smedt,T.,Daro,E.,Smith,J.,Tometsko,M.E.,Maliszewski,C.R.,Arm- strong,A.,Shen,V.,Bain,S.,Cosman,D.,Anderson,D.,Morrissey,P.J., formationdespitetheco-administrationofDMAb.Thisobserva- Peschon,J.J.,andSchuh,J.(1999)GenesDev.13,2412–2424 tionsuggeststhatDMAbmightstillpermitthelocalactivationof 20. Kong,Y.Y.,Yoshida,H.,Sarosi,I.,Tan,H.L.,Timms,E.,Capparelli,C., boneremodelingatthetissuelevelundercertainstimulatedcon- Morony,S.,Oliveira-dos-Santos,A.J.,Van,G.,Itie,A.,Khoo,W.,Wake- ditions,evenwhensystemicturnoverappearstoremainverylow. ham,A.,Dunstan,C.R.,Lacey,D.L.,Mak,T.W.,Boyle,W.J.,andPen- Future studies will examine whether such local stimulation of ninger,J.M.(1999)Nature397,315–323 remodeling might lead to increased BMD with PTH treatment 21. Min,H.,Morony,S.,Sarosi,I.,Dunstan,C.R.,Capparelli,C.,Scully,S., Van,G.,Kaufman,S.,Kostenuik,P.J.,Lacey,D.L.,Boyle,W.J.,andSimo- after longer periods of co-treatment with DMAb. From these net,W.S.(2000)J.Exp.Med.192,463–474 observations we conclude that antiresorptives did not preclude 22. Ominsky,M.S.,Stolina,M.,Li,X.,Corbin,T.J.,Asuncion,F.J.,Barrero, PTHanaboliceffectsontheskeletonandthatneitherboneresorp- M.,Niu,Q.T.,Dwyer,D.,Adamu,S.,Warmington,K.S.,Grisanti,M., tionnorosteoclastswerestrictlynecessaryforPTH-inducedbone Tan,H.L.,Ke,H.Z.,Simonet,W.S.,andKostenuik,P.J.(2009)J.Bone formation.However,areductioninosteoclastnumberand/orsur- Miner.Res.24,1234–1246 23. Simonet,W.S.,Lacey,D.L.,Dunstan,C.R.,Kelley,M.,Chang,M.S., face,bylimitingtheextentoftheremodelingspace,willrestrictthe Lu¨thy,R.,Nguyen,H.Q.,Wooden,S.,Bennett,L.,Boone,T.,Shimamoto, actionsofPTHtothemodelingspace,whichmaythenrequire G.,DeRose,M.,Elliott,R.,Colombero,A.,Tan,H.L.,Trail,G.,Sullivan,J., higherdosesand/orlongerperiodsofadministrationtobeeffec- Davy,E.,Bucay,N.,Renshaw-Gegg,L.,Hughes,T.M.,Hill,D.,Pattison, tiveatincreasingbonemass. W.,Campbell,P.,Sander,S.,Van,G.,Tarpley,J.,Derby,P.,Lee,R.,and 28172 JOURNALOFBIOLOGICALCHEMISTRY VOLUME285•NUMBER36•SEPTEMBER3,2010 DenosumabandAlendronateinhuRANKLMice Boyle,W.J.(1997)Cell89,309–319 1854–1862 24. Bucay,N.,Sarosi,I.,Dunstan,C.R.,Morony,S.,Tarpley,J.,Capparelli,C., 35. Turner,C.H.,andBurr,D.B.(1993)Bone14,595–608 Scully,S.,Tan,H.L.,Xu,W.,Lacey,D.L.,Boyle,W.J.,andSimonet,W.S. 36. Baldock,P.A.,Sainsbury,A.,Allison,S.,Lin,E.J.,Couzens,M.,Boey,D., (1998)GenesDev.12,1260–1268 Enriquez,R.,During,M.,Herzog,H.,andGardiner,E.M.(2005)J.Bone 25. Hsu,H.,Lacey,D.L.,Dunstan,C.R.,Solovyev,I.,Colombero,A.,Timms, Miner.Res.20,1851–1857 E.,Tan,H.L.,Elliott,G.,Kelley,M.J.,Sarosi,I.,Wang,L.,Xia,X.Z.,Elliott, 37. Lacey,D.L.,Timms,E.,Tan,H.L.,Kelley,M.J.,Dunstan,C.R.,Burgess, R.,Chiu,L.,Black,T.,Scully,S.,Capparelli,C.,Morony,S.,Shimamoto,G., T.,Elliott,R.,Colombero,A.,Elliott,G.,Scully,S.,Hsu,H.,Sullivan,J., Bass, M. B., and Boyle, W. J. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, Hawkins,N.,Davy,E.,Capparelli,C.,Eli,A.,Qian,Y.X.,Kaufman,S., 3540–3545 Sarosi,I.,Shalhoub,V.,Senaldi,G.,Guo,J.,Delaney,J.,andBoyle,W.J. 26. Kostenuik,P.J.,Capparelli,C.,Morony,S.,Adamu,S.,Shimamoto,G., (1998)Cell93,165–176 Shen, V., Lacey, D. L., and Dunstan, C. R. (2001) Endocrinology 142, 38. Rogers,M.J.,Gordon,S.,Benford,H.L.,Coxon,F.P.,Luckman,S.P., 4295–4304 Monkkonen,J.,andFrith,J.C.(2000)Cancer88,2961–2978 27. Samadfam, R., Xia, Q., and Goltzman, D. (2007) Endocrinology 148, 39. Weinstein,R.S.,Roberson,P.K.,andManolagas,S.C.(2009)N.Engl. 2778–2787 J.Med.360,53–62 28. Samadfam,R.,Xia,Q.,andGoltzman,D.(2007)J.BoneMiner.Res.22, 40. Ominsky, M., Jolette, J., Smith, S. Y., Vlasseros, F., Samadfam, R., and 55–63 Kostenuik,P.J.(2008)J.BoneMin.Res.23,S61 29. Kostenuik,P.J.(2005)Curr.Opin.Pharmacol.5,618–625 41. Brown,J.P.,Prince,R.L.,Deal,C.,Recker,R.R.,Kiel,D.P.,deGregorio, 30. Johnston,S.,Andrews,S.,Shen,V.,Cosman,F.,Lindsay,R.,Dempster, L.H.,Hadji,P.,Hofbauer,L.C.,Alvaro-Gracia,J.M.,Wang,H.,Austin,M., D.W.,andIida-Klein,A.(2007)Endocrinology148,4466–4474 Wagman,R.B.,Newmark,R.,Libanati,C.,SanMartin,J.,andBone,H.G. 31. Kostenuik,P.J.,Nguyen,H.Q.,McCabe,J.,Warmington,K.S.,Kurahara, (2009)J.BoneMiner.Res.24,153–161 C.,Sun,N.,Chen,C.,Li,L.,Cattley,R.C.,Van,G.,Scully,S.,Elliott,R., 42. Cosman,F.,Nieves,J.,Zion,M.,Woelfert,L.,Luckey,M.,andLindsay,R. Grisanti,M.,Morony,S.,Tan,H.L.,Asuncion,F.,Li,X.,Ominsky,M.S., (2005)N.Engl.J.Med.353,566–575 Stolina,M.,Dwyer,D.,Dougall,W.C.,Hawkins,N.,Boyle,W.J.,Simonet, W.S.,andSullivan,J.K.(2009)J.BoneMiner.Res.24,182–195 43. Cosman,F.,Wermers,R.A.,Recknor,C.,Mauck,K.F.,Xie,L.,Glass,E.V., 32. Li,J.,Sarosi,I.,Yan,X.Q.,Morony,S.,Capparelli,C.,Tan,H.L.,McCabe, andKrege,J.H.(2008)CalcifTissueInt.82,S59 S.,Elliott,R.,Scully,S.,Van,G.,Kaufman,S.,Juan,S.C.,Sun,Y.,Tarpley, 44. Fox,J.,Miller,M.A.,Newman,M.K.,Recker,R.R.,Turner,C.H.,and J.,Martin,L.,Christensen,K.,McCabe,J.,Kostenuik,P.,Hsu,H.,Fletcher, Smith,S.Y.(2007)Bone41,321–330 F.,Dunstan,C.R.,Lacey,D.L.,andBoyle,W.J.(2000)Proc.Natl.Acad.Sci. 45. Takahashi,H.,Hattner,R.,Epker,B.N.,andFrost,H.M.(1964)Henry U.S.A.97,1566–1571 FordHosp.Med.Bull.12,359–364 33. Bouxsein,M.L.,Pierroz,D.D.,Glatt,V.,Goddard,D.S.,Cavat,F.,Rizzoli, 46. Ominsky,M.S.,Schroeder,J.,Jolette,J.,Smith,S.Y.,Farell,D.J.,Atkinson, R.,andFerrari,S.L.(2005)J.BoneMiner.Res.20,635–643 J.E.,andKostenuik,P.J.(2008)J.BoneMin.Res.22,S88 34. Ferrari,S.L.,Pierroz,D.D.,Glatt,V.,Goddard,D.S.,Bianchi,E.N.,Lin, 47. Ohishi,M.,Chiusaroli,R.,Ominsky,M.,Asuncion,F.,Thomas,C.,Khatri, F. T., Manen, D., and Bouxsein, M. L. (2005) Endocrinology 146, R.,Kostenuik,P.,andSchipani,E.(2009)Am.J.Pathol.174,2160–2171 SEPTEMBER3,2010•VOLUME285•NUMBER36 JOURNALOFBIOLOGICALCHEMISTRY 28173

Description:
Jan 7, 2010 A STUDY OF INTERMITTENT PARATHYROID HORMONE WITH . genesis, promotes apoptosis of mature osteoclasts, and ulti- animal protocol for huRANKL mice was approved by the Eth- .. The extent to which PTH can increase BMD in mice via pure . The balance of modeling- and remod-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.