ebook img

Are membranes implemented with nanoparticles able to provide a breakthrough in water ... PDF

75 Pages·2014·3.44 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Are membranes implemented with nanoparticles able to provide a breakthrough in water ...

Faculty of Bioscience Engineering Academic year 2013 – 2014 Are membranes implemented with nanoparticles able to provide a breakthrough in water purification? Ruben Nackaerts Promotor: Prof. dr. ir. Arne Verliefde Tutor: Msc. Mahlangu Themba Oranso Master dissertation presented to obtain the degree of Master in Bioscience Engineering: Environmental Technology The author and the promoters give permission to use this thesis for consultation and to copy parts of it for personal use. Every other use is subject to the copyright laws, more specifically the source must be extensively specified when using results from this thesis. De auteur en promotoren geven de toelating deze scriptie voor consultatie beschikbaar te stellen en delen ervan te kopiëren voor persoonlijk gebruik. Elk ander gebruik valt onder de beperkingen van het auteursrecht, in het bijzonder met betrekking tot de verplichting uitdrukkelijk de bron te vermelden bij het aanhalen van de resultaten uit deze scriptie. Ghent, 6th of June 2014 The author, The promoter, Ruben Nackaerts Prof. dr. ir. Arne Verliefde Acknowledgements "It always seems impossible until it is done." - Nelson Mandela The past year was surreal for me. If I look back, I'd never thought that I would be writing know the last words of my thesis. In August I left for Jo'burg/Jozi, South-Africa (after being there you'll never use Johannesburg ever again) to start my thesis research. It was the best experience of my life. There were some ups and downs. Being alone in a big city in a strange country is never easy and also research was not always going like planned. Instruments dropped down like flies as if they didn't want me to get results! But I survived. I have met the most kind people who helped me out during my stay. Prof. Sabelo Mhlanga and dr. Edward Nxumalo, thank you for all the effort you guys have put in me during my stay: guiding me around, consulting on achieved results, providing me with comfortable accommodation and giving me all the opportunities to let me grow as a young scientist. The whole department of Applied Chemistry at the University of Johannesburg was a very welcoming environment. Someone was always there in case I needed help in the lab. A special group of people for me will be the best South-African Ultimate Frisbee team ever: Ultitude. Their acceptance of me in their team made my stay in South-Africa really feel like home. Especially due to "my personal drivers" Ché and Durban Dave, never shy of helping me out to get to practice. Leaving South-Africa and returning to Belgium didn't seem easy. But my loving parents and my family made me feel like I had never left home. Also my friends let me blend in perfectly again in the life I was used to. During the weeks after, more stress came as results needed to be delivered and the thesis had to be written. Thank you, Arne and Oranso for being patient with me and letting me do my thesis at my own pace. Due to the guidance by both of you, I have delivered something of which I am now proud. Of course I need to thank everyone at PaInT with helping me out with setting up my experiments, provision of chemicals and nice conversations in between. So yeah, looking back over the past months: it seemed indeed always impossible until it is done, which has just happened now. Finally I want to thank VLIR-UOS and the Belgian Development Cooperation for providing me with a scholarship for my stay in South-Africa. It is good to see that support goes to projects for young students who want to cross borders and blend in with different cultures, while being unified by scientific research. III Abstract The quality and quantity of available fresh water is declining all across the world. Membranes provide an ideal separation technology for easily scalable (small and large installations possible) water treatment installations. They have low energy requirements and are able to produce water of high purity. Membranes that are used for water purification purposes are made of hydrophobic polymers such as polyethersulfone. These polymers make the membranes quite water repellent and prone to fouling. Fouled membranes have been reported to have poor performance in terms of water flux and rejection of solutes. Due to fouling the applied pressure is normally raised to maintain water flux. This means more energy usage which makes the technology cost-ineffective. This therefore results in the need to modify the polymeric membranes for enhanced performance. To counteract the effect of fouling on membrane application, polyethersulfone (PES) membranes were successfully implemented with graphene oxide – zinc oxide (GO ZnO) nanoparticles to produce nanocomposite membranes with increased performance and anti-fouling properties. The successful synthesis of the nanoparticles was confirmed through FTIR, Raman, EDS and TEM analysis. Membrane production was eventually achieved by adding different loadings of the nanoparticles to the casting solution. The membranes were then synthesised following phase inversion techniques. Another series of membranes were produced as well through adding also a pore forming agent, polyvinylpyrrolidone (PVP), to the casting solution. All membranes were produced with 22 wt% PES and varied loading of PVP (0 wt% or 4 wt%) and nanoparticles (0 wt%; 0,2 wt%; 0,05 wt%; 0,0125 wt%). After synthesis the membranes were characterised for various properties such as pure water fluxes, trans-membrane resistance, salt rejection and anti-fouling properties. They were then applied for treatment of feed water spiked with trace organic contaminants. The best performing membrane was the PES PVP 0,02% GO ZnO membrane, although it had not the lowest contact angle with its 68±5°. It showed higher permeability (76 ± 15 L.m-2.h-1.bar-1) compared to the bare PES membrane (43,6 ± 0,9 L.m-2.h-1.bar-1), but its permeability was 40% less of that of the bare PES PVP membrane (122 ± 40 L.m-2.h-1.bar-1). The reduced water permeability was probably due to partial blocking of the pores by the nanoparticles. The PES PVP 0,02% GO ZnO membrane was resistant to fouling by organics and colloids compared to the rest of the synthesised membranes. It had a relative flux 20% higher than that of the PES PVP membrane after fouling. The membrane also rejected a handful of the 23 different trace organic compounds, that were dosed in a cocktail in the feed, with an total average rejection of 27,4% for all the compounds. The solutes were believed to be removed through a combination of steric hindrance by same charge species, hydrophilic/hydrophobic interactions and size exclusion mechanisms based on spatial arrangement instead of molecular weight. The PES PVP 0,02% GO ZnO membrane showed that adding PVP together with the nanoparticles was beneficial because it was performing better than the membrane with the same loading nanoparticles but without PVP. IV Samenvatting De kwaliteit en de kwantiteit van het beschikbare zoet water is in de wereld aan het verminderen. Membranen zijn een ideale scheidingsmethode voor eenvoudig schaalbare (zowel kleine als grote installaties mogelijk) waterzuiveringinstallaties. Ze hebben een lage energiebehoefte en zijn in staat water met een hoge zuiverheid te produceren. Membranen die in de waterzuivering gebruikt worden, zijn gemaakt van hydrofobe polymeren zoals polyethersulfon. Deze polymeren maken het membraan redelijk water afstotend en gevoelig voor fouling. Het is gekend dat gefoulde membranen slecht water doorlaten en opgeloste stoffen tegenhouden. Door fouling moet de druk over het membraan opgevoerd worden om een constante stroming van water te kunnen behouden. Dit heeft als gevolg dat er meer energie gebruikt moet worden, wat de technologie kosteninefficiënt maakt. Om de effecten van fouling in membraan toepassingen tegen te gaan werden polyethersulfon (PES) membranen succesvol geïmplementeerd met grafeen oxide - zink oxide (GO ZnO) nanodeeltjes om zogenaamde nanocomposite membranen te produceren met versterkte prestatie en anti-fouling eigenschappen. Het succesvol maken van deze deeltjes werd bevestigd door FTIR, Raman, EDS en TEM analyse. Membraanproductie werd uiteindelijk bereikt door verschillende hoeveelheden van de nanodeeltjes toe te voegen aan de gietoplossing. Het membraan werd dan gesynthetiseerd door de techniek van fase omwisseling toe te passen. Een tweede reeks membranen werd gemaakt door het toevoegen van een porievormende agent, polyvinylpyrrolidon (PVP), toe te voegen aan de gietoplossing. Alle membranen werden dus gemaakt met 22 wt% PES, een variërende hoeveelheid PVP (0 wt% of 4 wt%) en nanodeeltjes (0 wt%; 0,2 wt%; 0,05 wt%; 0,0125 wt%). Na de synthese werden de membranen gekarakteriseerd op basis van verschillende eigenschappen als de flux van zuiver water, de membraanweerstand, het tegenhouden van zouten en anti-fouling eigenschappen. Ze werden tenslotte toegepast op het zuiveren van een voedingsstroom gespiked met organische spoorcontaminaties. Het best presterende membraan was het PES PVP 0,02% GO ZnO membraan, ondanks het feit dat dit membraan niet de laagste contact hoek had met zijn 68±5°. Het toonde wel een hogere permeabiliteit (76 ± 15 L.m-2.h-1.bar-1) in vergelijking met het PES membraan zonder nanodeeltjes (43,6 ± 0,9 L.m-2.h-1.bar-1), maar zijn permeabiliteit lag wel 40% lager dan dat van het PES PVP membraan zonder nanodeeltjes (122 ± 40 L.m-2.h-1.bar-1). De verminderde permeabiliteit voor water was waarschijnlijk het gevolg van het blokkeren van de poriën door de nanodeeltjes. Het PES PVP 0,02% GO ZnO membraan was ook resistent voor organische en colloïde fouling in vergelijking met de andere gemaakte membranen. Na fouling lag zijn flux 20% hoger dan het PES PVP membraan. Het membraan weerhield ook enkele van de 23 verschillende organische spoorcomponenten, die gedoseerd werden als een cocktail in de voedingsoplossing, met een gemiddelde weerhouding van 27,4% voor alle componenten. Deze opgeloste organische stoffen werden waarschijnlijk tegengehouden door een combinatie van sterische hindering door gelijke ladingen, hydrofiele/hydrofobe interacties en uitsluiting op basis van grootte (niet op basis van het moleculair gewicht, maar eerder de ruimtelijke structuur). Dit membraan toonde ook aan dat het toevoegen van PVP als extra additief bevorderend was voor de prestatie van het membraan, omdat het betere resultaten vertoonde dan het membraan met dezelfde hoeveelheid nanodeeltjes maar zonder PVP. V Table of Contents ACKNOWLEDGEMENTS................................................................................................................ III ABSTRACT ................................................................................................................................... IV SAMENVATTING........................................................................................................................... V TABLE OF CONTENTS ................................................................................................................... VI LIST OF FIGURES ........................................................................................................................ VIII LIST OF TABLES ............................................................................................................................ IX LIST OF ABBREVIATIONS ............................................................................................................... X 1. INTRODUCTION ..................................................................................................................... 1 2. LITERATURE REVIEW .............................................................................................................. 3 2.1 WATER SUPPLY PROBLEM .............................................................................................................. 3 2.1.1 Water Scarcity ..................................................................................................................... 3 2.1.2 Water Pollution .................................................................................................................... 3 2.2 CONVENTIONAL WATER TREATMENT METHODS ............................................................................... 4 2.3 MEMBRANE PROCESSES FOR REMOVAL OF TRACE ORGANICS ................................................................ 5 2.3.1 Membrane separation ......................................................................................................... 5 2.3.2 Removal of trace organics by high-pressure membranes (NF/RO) ..................................... 7 2.3.3 Membrane manufacturing .................................................................................................. 8 2.4 CHALLENGES AND POTENTIAL SOLUTIONS FOR MEMBRANES IN WATER TREATMENT – REMOVAL OF TRACE ORGANICS ............................................................................................................................................... 9 2.4.1 Challenges ............................................................................................................................ 9 2.4.2 Membrane Modifications to limit organic fouling ............................................................. 10 2.4.3 Nanocomposite Membranes ............................................................................................. 11 2.4.4 Materials of interest .......................................................................................................... 12 2.4.4.1 Polyethersulfone ....................................................................................................... 12 2.4.4.2 Polyvinylpyrrolidone .................................................................................................. 13 2.4.5 Nanoparticles ..................................................................................................................... 14 2.4.5.1 Graphene Oxide ......................................................................................................... 14 2.4.5.2 Zinc Oxide .................................................................................................................. 16 2.4.5.3 Graphene Oxide/Zinc Oxide nanohybrid ................................................................... 17 2.5 GAPS IN KNOWLEDGE – GOAL OF THE THESIS................................................................................... 18 3. MATERIALS AND METHOD ................................................................................................... 20 3.1 MATERIALS ............................................................................................................................... 20 3.2 SYNTHESIS AND CHARACTERISATION OF GRAPHENE OXIDE - ZINC OXIDE NANOPARTICLES ........................ 20 3.2.1 Synthesis of Graphene Oxide (GO) nanoparticles .............................................................. 20 3.2.2 Synthesis of Graphene Oxide – Zinc Oxide Nanoparticle hybrid ........................................ 21 3.2.3 Characterisation of GO and GO ZnO nanoparticles ........................................................... 21 3.3 MEMBRANE SYNTHESIS AND CHARACTERISATION ............................................................................. 22 3.3.1 Membrane synthesis .......................................................................................................... 22 3.3.2 Membrane characterisation .............................................................................................. 23 VI 3.3.3 Surface and Cross-sectional morphology .......................................................................... 24 3.4 MEMBRANE FILTRATION TESTS ..................................................................................................... 24 3.4.1 Filtration setups ................................................................................................................. 24 3.4.1.1 Dead-end Setup ......................................................................................................... 24 3.4.1.2 Cross-Flow Setup ....................................................................................................... 25 3.4.2 Filtration Protocol .............................................................................................................. 25 3.4.2.1 Dead-end Experiments .............................................................................................. 25 3.4.2.2 Cross-flow Experiments ............................................................................................. 26 3.4.3 Trace contaminants and analysis ...................................................................................... 27 3.4.3.1 Solid Phase Extraction ............................................................................................... 27 3.4.3.2 Sample Analysis ......................................................................................................... 28 3.4.4 Fouling experiments .......................................................................................................... 28 4. RESULTS & DISCUSSION ....................................................................................................... 29 4.1 CHARACTERISATION OF NANOPARTICLES ........................................................................................ 29 4.1.1 FTIR .................................................................................................................................... 29 4.1.2 TEM ................................................................................................................................... 31 4.1.3 EDS ..................................................................................................................................... 32 4.1.4 Raman Spectroscopy ......................................................................................................... 33 4.2 MEMBRANE PRODUCTION AND CHARACTERISATION ......................................................................... 34 4.2.1 Contact Angle and Interfacial Free Energies ..................................................................... 34 4.2.2 Pure Water Flux and Membrane Permeability .................................................................. 37 4.2.3 Salt Rejection ..................................................................................................................... 40 4.2.4 SEM images ....................................................................................................................... 43 4.3 FOULING BEHAVIOUR ................................................................................................................. 45 4.3.1 Organic Fouling ................................................................................................................. 45 4.3.2 Colloidal Fouling ................................................................................................................ 48 4.4 APPLICATION IN REJECTION OF TRACE ORGANIC POLLUTANTS ............................................................. 49 5. CONCLUSIONS AND RECOMMENDATIONS ........................................................................... 53 5.1 CONCLUSIONS ........................................................................................................................... 53 5.2 RECOMMENDATIONS FOR FUTURE RESEARCH ................................................................................. 54 REFERENCES ............................................................................................................................... 55 VII List of Figures Figure 2.1: Molecular structure of PES (Ahmad, et al., 2013) ............................................................... 12 Figure 2.2: Structure of polyvinylpyrrolidone (Haaf, Sanner, & Straub, 1985) ..................................... 13 Figure 2.3: Molecular structure for GO (Hong et al., 2011) .................................................................. 15 Figure 2.4: Example of the production route for GO ZnO nanoparticles (Li et al., 2012) .................... 18 Figure 3.1: Scheme from the reaction of potassium permanganate in sulfuric acid to diamanganese heptoxide (Dreyer et al., 2010) ............................................................................................................. 20 Figure 3.2: Membrane filtration dead-end setup .................................................................................. 25 Figure 3.3: Membrane filtration cross-flow setup ................................................................................ 25 Figure 4.1: FTIR spectrum of graphite, graphene oxide nanoparticles and the nanohybrid graphene oxide - zinc oxide ................................................................................................................................... 29 Figure 4.2: Zoomed in FTIR spectrum of graphene oxide and graphene oxide - zinc oxide ................. 30 Figure 4.3: TEM images of graphene oxide - zinc oxide nanohybrid31 Figure 4.4: ED - spectra (spectrum 2 and spectrum 5) for graphene oxide - zinc oxide ....................... 32 Figure 4.5: Raman spectrum for graphene oxide and graphene oxide - zinc oxide .............................. 33 Figure 4.6: Water contact angles with the different membranes ......................................................... 36 Figure 4.7: Pure water flux under different pressures for PES membranes in a dead-end setup ........ 37 Figure 4.8: Pure water flux under different pressures for PES PVP membranes in a dead-end setup . 38 Figure 4.9: Pure water flux under different pressures for PES membranes in a cross-flow setup ....... 39 Figure 4.10: Pure water flux under different pressures for PES membranes in a cross-flow setup ..... 39 Figure 4.11: Salt rejection for PES membranes in a cross-flow setup ................................................... 41 Figure 4.12: Salt rejection for PES PVP membranes in a cross-flow setup............................................ 41 Figure 4.13: SEM images of cross sections of different membranes .................................................... 44 Figure 4.14: Influence of organic fouling (alginate) on water flux for PES membranes........................ 46 Figure 4.15: Influence of organic fouling (alginate) on water flux for PES PVP membranes ................ 46 Figure 4.16: Influence of organic fouling on the rejection of NaCl for PES membranes ....................... 47 Figure 4.17: Influence of organic fouling on the rejection of NaCl for PES PVP membranes ............... 48 Figure 4.18: Influence of colloidal fouling on the relative flux for PES membranes ............................. 48 Figure 4.19: Influence of colloidal fouling on the relative flux for PES PVP membranes ...................... 49 Figure 4.20: Rejection of pharmaceuticals (ranked by decreasing MW) for PES membranes .............. 50 Figure 4.21: Rejection of pharmaceuticals (ranked by decreasing MW) for PES PVP membranes ...... 50 Figure 4.22: Rejection of pharmaceuticals (ranked by charge) for PES membranes ............................ 51 Figure 4.23: Rejection of pharmaceuticals (ranked by charge) for PES PVP membranes ..................... 51 Figure 4.24: Rejection of pharmaceuticals (ranked by log D value) for PES membranes ..................... 52 Figure 4.25: Rejection of pharmaceuticals (ranked by log D value) for PES PVP membranes .............. 52 VIII

Description:
nanocomposite membranes with increased performance and anti-fouling average rejection of 27,4% for all the compounds. Figure 4.23: Rejection of pharmaceuticals (ranked by charge) for PES PVP . Reverse Osmosis.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.