ebook img

Are jets in symbiotic stars driven by magnetic fields? PDF

0.07 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Are jets in symbiotic stars driven by magnetic fields?

Astronomy&Astrophysicsmanuscriptno.jetform February2,2008 (DOI:willbeinsertedbyhandlater) Are jets in symbiotic stars driven by magnetic fields? MatthiasStute1 andMaxCamenzind1 LandessternwarteHeidelberg,Ko¨nigsstuhl,D-69117Heidelberg,Germany Received25November2004/Accepted26January2005 5 0 0 Abstract. Wecomparetwoscenariostolaunchjets–formationbyMHDprocessesorformationbythermalpressureinthe 2 boundary layer(BL)–withrespecttotheircompatibilitywithobservational dataofjetsinsymbioticstars,especiallyinthe wellstudiedjetsourceMWC560.Finally,wediscusspointsoffurtherresearchtobedone. n a J Keywords. ISM:jetsandoutflows–binaries:symbiotic 6 2 1. Introduction Anotherclass of accreting WDs are cataclysmic variables 1 (CV)whichareverycloseWDbinarieswithalowmassmain v Althoughjetsareubiquitousphenomenainmanydifferentas- sequencestarascompanion.ThemasstransferisduetoRoche 6 trophysical objects as young stellar objects where they are lobeoverflow,notduetowindaccretion.Theshorttimescales 6 5 drivenbyprotostars,symbioticstars(whitedwarfs),X-raybi- inthesesystemsmakethemthebestunderstoodaccretingsys- 1 naries (neutron stars and stellar mass black holes) and active tems. Remarkably,they show no jet emission. Further related 0 galactic nuclei (supermassive black holes), their formation is objectsare supersoftX-ray sources, in which the temperature 5 relativelyunclear. andpressurein theboundarylayer(BL)oftheWD areinthe 0 Themasslossrateofthejetisfoundtobeconnectedtothe correct range to maintain steady nuclear burning on the WD / h massaccretionrateoftheunderlyingdiscfoundinmostobjects surface. p (e.g.Livio1997).Thereforethenecessarycomponentsseemto - o bewellknownandcommontoallobjects.Amorecarefulin- Injetformationmodelspresentedsofar,themagneticfield r vestigationofonespecificclassofobjectsshouldpromisenew seems to play a key role. The first analytical work study- t s insightsalsoforthemechanismsintheotherclasses.Fromthe ingmagneto-centrifugalaccelerationalongmagneticfieldlines a observationalpointofview,oneneedsobservationswithahigh threading an accretion disc was done by Blandford&Payne : v spatial resolution and kinematic informationsfrom regionsas (1982). They have shown the braking of matter in azimuthal Xi nearaspossibletothejetsource.Theseaspectsmaketheclass direction inside the disc and their acceleration above the ofsymbioticstarsidealtestbeds. disc surface by the poloidal magnetic field components. r a Toroidal componentsof the magnetic field then collimate the Symbiotic stars are interacting binaries with orbital peri- flow. Numerous semi-analytic models extended the work of ods in the range of years. These systems show outburstssim- Blandford&Payne(1982), eitherrestrictedtoself-similarso- ilarto classicalnovae.Thestellar componentisa coolredgi- lutionsandtheirgeometriclimitations(e.g.Pudritz&Norman ant (RG), the hot component a white dwarf (WD) with tem- 1986; Vlahakis&Tsinganos 1998, 1999; Ferreira&Casse peratures of 50000 – 200000 K. Both stars show mass loss 2004)orwithnon-self-similarsolutions(e.g.Camenzind1990; throughsupersonicwinds.WindmaterialfromtheRGiscap- Pelletier&Pudritz1992;Breitmoser&Camenzind2000). turedbytheWDtoformanaccretiondisc.Theaccretionthen causesthermonuclearexplosionsoftheWDsurfaceleadingto Another approach is to use time-dependant numerical anincreaseinluminosityfollowedbyjetemission.Jetsarede- MHD simulations to investigate the formation and collima- tectedin10outofalmost200symbioticstars(Brocksoppetal. tion of jets. In most models, however, a polytropic equilib- 2004) and this process was directly observed in CH Cygni riumaccretiondiscwasregardedasaboundarycondition(e.g. (Taylor,Seaquist&Mattei1986).OtherfamoussystemsareR Krasnopolsky,Li&Blandford 1999, 2004; Andersonetal. AquariiandMWC560.Whilethefirsttwoobjectsareseenat 2004; Goodson,Bo¨hm&Winglee 1999). The magnetic feed- highinclinations,thejetaxisinMWC560ispracticallyparal- back on the disc structure is therefore not calculated self- leltothelineofsight. consistently.Onlyinrecentyearswerethefirstsimulationsin- cludingthe accretion disc self-consistently in the calculations Send offprint requests to: Matthias Stute, e-mail: ofjetformationpresented(e.g.Casse&Keppens2002,2004; [email protected] Kato,Mineshige&Shibata2004). 2 MatthiasStuteandMaxCamenzind:Arejetsinsymbioticstarsdrivenbymagneticfields? Due to the fact, that strong magnetic fields have been de- – orthemagneticluminosity(Camenzind1997) tected so far only in one symbiotic system (Z Andromedae, 1 Sokoloski&Bildsten 1999), the jet formation by magneto- Lmag = Ω∗ R3∗BpBϕ =4.76×1034 2 centrifugal forces exclusively seems to be insufficient. Radiativelaunchingcanbeexcludedduetotoosmallradiation × Ω∗ R∗ 3 Bp Bϕ ergs−1. (3) fields.Anewpossibilitytoaccelerateplasmaclosetothecen- h−1 7×108cm MG MG ! (cid:18) (cid:19) ! ! tralobjectwasproposedinvolvingSPLASHs(SPatiotemporal The flux in the UV band was measured as 10−9 erg cm−2 s−1 LocalizedAccretionSHocks)intheBL(Soker&Regev2003). (Maranetal.1991)andtheUVluminosity–whichislikelyto Locallyheatedbubblesexpand,mergeandaccelerateplasmato be equal to the accretion power of the disk and the boundary velocitieslargerthanthelocalescapevelocity.Soker&Lasota layer–isthen (2004)appliedthismodeltodisk-accretingwhitedwarfstoex- plaintheabsenceofjetsinCV. Theyhavefoundacriticalac- d 2 cretion rate of ∼ 10−6 M⊙ yr−1 below which no jets should LUV =1.2×1035 ergs−1. (4) kpc bepresent.Thisscenariowasintroducedonlyinanalyticesti- ! mates. With a derived distance of 2.5 kpc, this suggests an minimal In section 2, we give generalestimates based on observa- accretionrateof6.3×10−8 M⊙ yr−1 andthereforeanejection tions of the well studied jet in MWC 560. After that we cal- efficiencyof14%. culatethemagneticfieldnearthewhite dwarfrequiredforjet The minimal accretion rate is below the critical accretion formationbyMHDprocessesinsection3.Insection4,welist rate derived by Soker&Lasota (2004) by a factor of 16. As differentwayswithwhichamagneticfieldinMWC560could theseauthorsclaimanuncertaintyofa factorof∼ 10andthe bedetected.Finallyadiscussionisgiven. remainingfactorcouldnaturallyarisefromourestimates,this shouldnotconcern. 2. Generalestimates Using the observables M˙, Ljet and P˙0, one can fix in principle the two free parameters χ and Γ of the model of As observed by Schmidetal. (2001) and as used to simulate Soker&Regev (2003). These parameters are the fractions of the jet nozzle in Stute,Camenzind&Schmid (2005), the pa- the mass outflow rate due to SPLASHs to the accretion rate rametersofthejetinMWC560are and of the initial kinetic energyto the final kinetic energyin- – thevelocityv =1000kms−1 , sideaSPLASH,respectively.Fixingthemodelhighlydepends jet – thenumberdensityn =5×106cm−3,whichisequaltoa onestimatingtherightmassaccretionratewhich,however,is jet massdensityρ =8.4×10−18gcm−3,and ratherdifficult. jet – thejetradiusR =1AU. jet Usingtheequations 3. Requiredmagneticfieldsinthemagneticjet formationscenario M˙ = πR2 m n v jet jet H jet jet P˙ = M˙ v LetΨbeamagneticsurfaceanchoredattheinnerradiusofthe 0 jet jet accretiondisk.Thenthissurfaceremainsalwaysinsidethejet 1 1 L = M˙ v2 = πR2 m n v3 , uptolargedistances.Usingtheconstantsofmotionalongthis jet 2 jet 2 jet H jet jet surfaceandthejetparameters,onecanmakedetailedestimates thisspecifies followingfromthescenario. – themassoutflowrateM˙jet =9.33×10−9 M⊙ yr−1, As magneto-centrifugally driven jets have fast- – themomentumdischargeP˙ =5.93×1025gcm−1s−2and magnetosonic Mach numbers Mfm ∼ 3 (e.g. 0 – thekineticjetluminosityL =2.93×1033ergs−1. Krasnopolsky,Li&Blandford 2004), the total magnetic jet fieldinthejetshouldbe This luminosity can be provided by several different mecha- nisms: B2 +B2 = 1 4πρ v =0.34G∼ B , (5) p,jet ϕ,jet 3 jet jet ϕ,jet – bythe(insufficient)luminosityofthewhitedwarfs q q astheazimuthalcomponentshouldbedominantinsidethejet. L = 4πR2σT4 = WD ∗ WiththeconservationofcurrentI = RB ,theazimuthalfield ϕ 3.5×1030 R∗ 2 T 4 ergs−1 (1) nearthejetsourceisthen 7×108cm 104K – the accretion powe(cid:18)r of the di(cid:19)sk(cid:18)(and a(cid:19)lmost the same Bϕ,0 ∼7.3kG. (6) amountcomingfromaBL)ofarotatingmagnetizedWD AsB ≪ B ,thetotalmagneticfieldshouldbebyfarlarger. ϕ,0 p,0 Lacc = GMR∗∗M˙ =1.19×1035 MM⊙∗ ABpn,jeutp≪per0.l3im4iGt,caanndbethfeocuonndsuersvinagtioangaoifnfleuqxuaΨtio=nB(5p)R,n2,amleaedly- ! ingtomagneticfieldsintherangeof × R∗ −1 M˙ ergs−1 (2) 7×108cm 10−8M⊙yr−1 7.3kG≪ Bp,0 ≪155MG. (7) (cid:18) (cid:19) ! MatthiasStuteandMaxCamenzind:Arejetsinsymbioticstarsdrivenbymagneticfields? 3 4. Observingthemagneticfield and Stute,Camenzind&Schmid (2005) have found that the number density near the red giant should be of the order of Following Brocksoppetal. (2004), jets are detected in 10 109 cm−3 andthenbedecreasingfollowinga1/r2-law,theto- out of almost 200 symbiotic stars. Remarkably, this is talcolumndensityindirectionswithlargeinclinationwouldbe exactly the fraction of magnetized to un-magnetized iso- oftheorderof1022 cm−2 whichistoolowtocausetheneces- lated white dwarfs with field strengths larger than 30 kG saryabsorption.ThecolumndensityofthejetinMWC560has (Wickramasinghe&Ferrario2000). similarvalues(Schmidetal.2001)leadingtothesameconclu- Astrongmagneticfield,however,hasbeendetectedonlyin sion. The non-detection therefore sets an upper limit for the one symbiotic system (Z Andromedae, Sokoloski&Bildsten magneticfieldwhichisatthelowerendoftherangeofeq.(7). 1999).Theyinterpretedanobservedperiodicphotometricvari- ability as the Keplerian spin period at the magnetosphericra- dius r , where the magnetic pressure of the WD’s field is 5. Discussion mag comparableto the ram pressureof the accretedmaterial. This ByanalyticestimatesforthesymbioticstarMWC560,wehave radiuscanbecalculatedas tried to decide which of the two main mechanisms – forma- B4R12 1/7 B 4/7 tion by MHD processes or formation by thermal pressure in r = =3.6×109 (8) mag 32GMM˙2 MG the boundarylayer (BL) – is more reliable to explain the ob- R ! 12/7 M −1/7(cid:18) (cid:19) M˙ −2/7 servedparametersofjetsinsymbioticstars.Thisquestioncan × cm, not(yet)beansweredbyobservations. (cid:18)7×108cm(cid:19) M⊙! 10−8M⊙yr−1! TheX-rayobservationsofMWC560givinganupperlimit forthemagneticfieldstrengthshowthatisstillconsistentwith whichleadstoaKeplerianperiodof the minimalmagneticfieldrequiredfora magneticjetforma- r3 B 6/7 R 18/7 tion process.FurtherX-rayobservationsareneededto reduce mag P = 2π =116 thisdetectionlimitandtodecidewhetherthemagneticscenario sGM MG 7×108cm canbeexcludedornot.Untilveryhighspeedphotometricob- (cid:18) (cid:19) (cid:18) (cid:19) M −5/7 M˙ −3/7 servationsaremade,alsothefirstwaytodeducethemagnetic × s. (9) M⊙ 10−8M⊙yr−1 fieldstrengthdoesnotrevealanyreasonagainstamagneticjet ! ! formation process. At the moment, both mechanisms are still In the case of Z And, the measured period was about28 min possible. (Sokoloski&Bildsten1999),equivalenttoamagneticfieldof As the BL scenario was introduced only analytically and about22MG. thederivationofthemodelparametersbyobservationishighly AsnooscillationshavebeendetectedinMWC560sofar, difficult, however, numerical simulations of a compact object themagneticfieldnearthewhitedwarfshouldhavelowerval- withasolidsurfaceaccretingmatterwouldbeinteresting.Then uesintherangeofeq.(7)–oftheorderof B = 100kG,with thereliabilitycouldbequalitativelyandquantitativelychecked whichtheperiodwouldbe16s andthereforecertainlybelow in differentrangesof parameters,which should be interesting anyobservablelimit. notonlyforsymbioticstars,butalsoforotherkindsofbinaries. Soker&Regev (2003), however, assumed that the mag- Theeffectivityofjetlaunchingbythermalpressureinsidethe neticfieldeitherinsidethejetornearthejetsourcewouldun- BLshouldbeinvestigatedanddependenciesofjetparameters dergofastreconnectionwhichheatsuptheplasmatotempera- asoutflowrate,outflowvelocityandjetkineticluminosityfrom turesmakingthegasvisibleinX-rays.Themaximumtempera- initialmodelparametersase.g.themassaccretionrateshould tureuptowhichthegasisheatedcanbeestimatedbyequipar- be derived. The authors have started first simulations whose tition(Tanumaetal.2003)as resultswillbepresentedsoon. n −1 B 2 T ∼106 K. (10) Acknowledgements. Parts of this work were supported by the max 106cm−3 100mG Deutsche Forschungsgemeinschaft (DFG). We acknowledge the im- (cid:18) (cid:19) (cid:18) (cid:19) Inside the jet, the maximum temperature, however, would be provingcommentsandsuggestionsbythereferee. negligible.Nearthejetsourceitwouldbe∼ 7×107 Kwitha densityof1.4×1016cm−3–whichcorrespondstoanaccretion References rate of 10−8 M⊙ yr−1 – and a magnetic field of 100 kG. The emissivityin Bremsstrahlung,createdbyreconnection,would Anderson,J.M.,Li,Z.-Y.,Krasnopolsky,R.,Blandford,R.D. then be 3 × 109 erg s−1 cm−3 and, multiplied by the volume 2004,submittedtoApJ,astro-ph/0410704 of the accretion disk affected by the magnetic field (2πR∗)× Blandford,R.D.,Payne,D.G.1982,MNRAS199,883 (0.1R∗)×(rmag−R∗),thetotalluminositywouldbe2.4×1035erg Breitmoser,E.,Camenzind,M.2000,A&A361,207 s−1.Withagainadistanceof2.5kpc,thefluxwouldbe3×10−8 Brocksopp, C., Sokoloski, J. L., Kaiser, C., Richards, A. M., ergs−1cm−2.MWC560wasnotdetectedbytheROSATall-sky Muxlow,T.W.B.,Seymour,N.2004,MNRAS347,430 survey,although the flux limit of ROSAT is 3×10−12 erg s−1 Camenzind,M.1990,Rev.M.A.3,234 cm−2(Cruddaceetal.2002). Camenzind,M.1997,in:IAUSymp.182:Herbig-HaroFlows AcommonargumentinYSOstoexplainthenon-detection andtheBirthofStars,eds.B.Reipurth&C.Bertout,Kluwer isabsorptionbyahighcolumndensity.AsSchmidetal.(2001) AcademicPublishers,p.241 4 MatthiasStuteandMaxCamenzind:Arejetsinsymbioticstarsdrivenbymagneticfields? Casse,F.,Keppens,R.2002,ApJ581,988 Casse,F.,Keppens,R.2004,ApJ601,90 Cruddace,R.,Voges,W.,Bo¨hringer,H.,Collins,C.A.,Romer, A. K.,MacGillivray,H., Yentis,D., Schuecker,P., Ebeling, H.,DeGrandi,S.2002,ApJS140,239 Ferreira,J.,Casse,F.2004,ApJ601,139 Goodson, A.P., Bo¨hm, K.-H., Winglee, R.M. 1999, ApJ 524, 142 Kato,Y.,Mineshige,S.,Shibata,K.2004,ApJ605,307 Krasnopolsky,R., Li, Z.-Y., Blandford,R. D. 1999, ApJ 526, 631 Krasnopolsky,R., Li, Z.-Y., Blandford,R. D. 2004, ApJ 595, 631 Livio, M. 1997, in: IAU Colloquium 163: Accretion Phenomena and Related Outflows, eds. D. T. Wickramasinghe, G. V. Bicknell & L. Ferrario, ASP ConferenceSeriesVol.121,p.845 Maran, S. P., Michalitsianos, A. G., Oliversen, R. J., Sonneborn,G.1991,Nature350,404 Pelletier,G.,Pudritz,R.E.1992,ApJ394,117 Pudritz,R.E.,Norman,C.A.1986,ApJ301,571 Schmid, H. M., Kaufer, A., Camenzind, M., Rivinius, Th., Stahl, O., Szeifert, T., Tubbesing, S., Wolf, B. 2001, A&A 377,206 Soker,N.,Lasota,J.-P.2004,A&A422,1039 Soker,N.,Regev,O.2003,A&A406,603 Sokoloski,J.L.,Bildsten,L.1999,ApJ517,919 Stute,M.,Camenzind,M.,Schmid,H.M.2005,A&A429,209 Tanuma, S., Yokoyama,T., Kudoh,T., Shibata, K. 2003, ApJ 582,215 Taylor,A.R.,Seaquist,E.R.,Mattei,J. A.1986,Nature319, 38 Vlahakis,N.,Tsinganos,K.1998,MNRAS298,777 Vlahakis,N.,Tsinganos,K.1999,MNRAS307,279 Wickramasinghe,D.T.,Ferrario,L.2000,PASP112,873

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.