ebook img

Arduino DGPS System Implementation PDF

80 Pages·2016·3.9 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Arduino DGPS System Implementation

Linköping University Institute of Technology - Intelligent Transport Systems and Logistics Low-cost implementation of Differential GPS using Arduino Master thesis Martin Svatoň 13. September 2016 Supervisor: David Gundlegård Examiner: Carl Henrik Häll ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta dopravní Ústav letecké dopravy Nízkonákladavoá realizace Diferenciální GPS pomocí systému Arduino Low-cost implementation of Differential GPS using Arduino Diplomová práce Studijní program: Technika a technologie v dopravě a spojích Studijní obor: Inteligentní dopravní systémy Vedoucí práce: Ing. Petr Bureš, Ph.D. David Gundlegård, MSc Martin Svatoň Acknowledgment This thesis was carried out with the Department of Science and Technology at the Linköping University, and Department of Transport Telematics at Czech Technical University in Prague as a final part of the Double Degree study program Intelligent Transport Systems. I would like to thanks to my examiner Carl Henrik Häll (LIU), supervisors David Gundlegård(LIU) and Petr Bureš (CTU) for introductory lectures in GPS positioning and their contributions during the thesis progress. Special thanks to Donghwan Yoon from Sejong University for providing materials and description about the position-domain projection algorithm. Upphovsrätt Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – från publiceringsdatum under förutsättning att inga extraordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns lösningar av teknisk och administrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/. Copyright The publishers will keep this document online on the Internet – or its possible replacement – from the date of publication barring exceptional circumstances. The online availability of the document implies permanent permission for anyone to read, to download, or to print out single copies for his/her own use and to use it unchanged for non-commercial research and educational purpose. Subsequent transfers of copyright cannot revoke this permission. All other uses of the document are conditional upon the consent of the copyright owner. The publisher has taken technical and administrative measures to assure authenticity, security and accessibility. According to intellectual property law the author has the right to be mentioned when his/her work is accessed as described above and to be protected against infringement. For additional information about the Linköping University Electronic Press and its procedures for publication and for assurance of document integrity, please refer to its www home page: http://www.ep.liu.se/. © Martin Svaton 1 Abstract In today’s technical dimensions, there are various autonomous gadgets as drones or autonomous lawnmowers, which are widely used by the public to facilitate everyday life. Drones become more and more popular due to mobility and autonomous air operations. The continuous development leads to finding of diverse application for drones such as delivery service or filming. These autonomous devices are used to navigate themselves and operate without human intervention. It predominantly uses a GPS as a source of position information, which is provided by GPS receiver attached to the device. However, these measurements are not accurate enough to estimate the exact position, which is one of the major requirements for autonomous operation. The main objective of this thesis is to propose the solution for improving the positioning accuracy, which is not expensive and easy to implement. The Arduino DGPS solution implemented in this thesis proposes the algorithms for position accuracy improvements in two ways. The first mode uses a range residual computed by the receiver to estimate pseudorange corrections (PRCs) and corresponding position correction. The second mode works as an advanced Satellite- Based Augmentation System (SBAS) correction repeater, which uses the SBAS correction to acquire the position correction. Both solutions are implemented to the Arduino and user can choose, which correction method will be used. Keywords: Differential GPS, Arduino, Low-cost implementation Abstrakt V dnešní přetechnizované době je využívano mnoha autonomních zařízení, jako jsou autonomní sekačky či drony, které jsou široce využívány v soukromém sektoru. Drony jsou velmi populární díky své mobilitě a schopnosti autonomních letů. Postupný vývoj těchto zařízení vedl k objevu mnoha aplikací, jako například filmování z ptačí perspektivy nebo autonomní doručování. Tyto autonomní zařízení se samy navigují a fungují bez uživatelských intervencí. Pro navigaci se převážně využívá systému GPS. Běžně dostupné GPS příjmače však poskytují poziční data s určitou chybou, které je třeba eliminovat pro přesnou navigaci. Hlavním cílem této práce je návrh řešení zpřesňování GPS pozice, které je levné a snadno použitelné. Navrhované řešení Arduino DGPS využívá dvou principů zpřesňování GPS měření. První mód počítá korekce pseudovzdáleností na základě rozdílu sledované a vypočtené pseudovzdálenosti (range residuals). Druhý mód pracuje na principu opakovače SBAS korekcí, kde se přijímané korekce SBAS aplikují na měřenou pozici, čímž dojde ke zpřesnění GPS pozice. Obě rešení jsou implementována do systému Arduino a uživatel si může vybrat jednu z korekčních metod. Klíčová slova: Diferenční GPS, Arduino, Nízkonákladová implementace 2 Table of Contents 1 INTRODUCTION .........................................................................................................................................8 1.1 BACKGROUND ........................................................................................................................................... 8 1.2 AIM ............................................................................................................................................................. 8 1.3 OBJECTIVES ............................................................................................................................................... 8 1.4 SCOPE ......................................................................................................................................................... 9 1.5 RELATED WORK ....................................................................................................................................... 9 1.6 OUTLINE .................................................................................................................................................... 9 2 GLOBAL NAVIGATION SATELLITE SYSTEM ................................................................................... 10 2.1 GNSS HISTORY ..................................................................................................................................... 10 Radio based navigation systems ................................................................................... 10 Doppler-based navigation systems .............................................................................. 11 Current GNSS situation ..................................................................................................... 12 2.2 GPS ......................................................................................................................................................... 13 System composition ........................................................................................................... 13 GPS signals.............................................................................................................................. 14 Code measurement determination .............................................................................. 15 GPS access regulation ........................................................................................................ 15 2.3 GPS DATA ............................................................................................................................................ 16 RAW Navigation messages .............................................................................................. 16 NMEA ........................................................................................................................................ 17 RTCM ........................................................................................................................................ 18 UBX ............................................................................................................................................ 18 RINEX........................................................................................................................................ 18 2.4 REFERENCE SYSTEM ............................................................................................................................. 19 WGS84 ...................................................................................................................................... 19 Positioning quality .............................................................................................................. 20 2.5 POSITIONING METHOD ......................................................................................................................... 21 Pseudorange Code measurement ................................................................................. 21 Pseudorange Phase measurement ............................................................................... 22 Lateration ............................................................................................................................... 23 Doppler Shift positioning ................................................................................................. 25 2.6 GPS ERRORS .......................................................................................................................................... 26 Clock errors ............................................................................................................................ 26 Ionospheric Errors .............................................................................................................. 26 Tropospheric errors ........................................................................................................... 27 Ephemeris Error .................................................................................................................. 27 Multipath ................................................................................................................................. 27 Dilution of Precision ........................................................................................................... 28 3 POSITION AUGMENTATION TECHNIQUES ..................................................................................... 29 3.1 SBAS ....................................................................................................................................................... 29 EGNOS ...................................................................................................................................... 29 WAAS ........................................................................................................................................ 30 3.2 DIFFERENTIAL GPS (DGPS) .............................................................................................................. 30 Position domain DGPS ....................................................................................................... 31 Range domain DGPS ........................................................................................................... 32 Low cost receivers and DGPS ......................................................................................... 34 DGPS errors ............................................................................................................................ 35 4 DGPS SYSTEM PROPOSAL .................................................................................................................... 36 4.1 FUNCTIONAL PROPOSAL ...................................................................................................................... 37 3 Range Residuals (MODE1) .............................................................................................. 37 SBAS corrections (MODE2) ............................................................................................. 37 Application of the PRC ....................................................................................................... 38 4.2 PRC PROJECTION TO POSITION DOMAIN ......................................................................................... 38 Projection matrix H ............................................................................................................ 39 4.3 GPS RECEIVERS SETTING .................................................................................................................... 43 Rover Station ......................................................................................................................... 43 Reference Station (RS) ...................................................................................................... 43 4.4 ALGORITHM IMPLEMENTATION ......................................................................................................... 44 Rover Station ......................................................................................................................... 44 Reference Station (RS) ...................................................................................................... 45 4.5 DATA TRANSMISSION ........................................................................................................................... 49 Data Formats ......................................................................................................................... 50 4.6 SELF-ACCURACY MONITORING .......................................................................................................... 51 Integrity Monitoring ........................................................................................................... 51 Accuracy Monitoring .......................................................................................................... 52 5 HARDWARE DESIGN ............................................................................................................................. 53 5.1 PARTS DESCRIPTION ............................................................................................................................ 53 GPS Receivers ........................................................................................................................ 53 Wi-Fi ESP8266 ...................................................................................................................... 53 QVGA ILI9341 ....................................................................................................................... 53 Arduino .................................................................................................................................... 54 Wiring Diagram .................................................................................................................... 54 5.2 PCB DESIGN .......................................................................................................................................... 56 5.3 IN OPERATION ....................................................................................................................................... 57 RS MODE1 (RES) ................................................................................................................. 57 RS MODE2 (SBAS) ............................................................................................................... 58 Rover Station ......................................................................................................................... 58 6 TEST RESULTS ........................................................................................................................................ 59 6.1 STATIC MEASUREMENTS ...................................................................................................................... 59 MODE1 (RES) ........................................................................................................................ 59 MODE 2 (SBAS) .................................................................................................................... 61 6.2 DYNAMIC MEASUREMENTS.................................................................................................................. 63 MODE1 (RES) ........................................................................................................................ 63 MODE2 (SBAS) ..................................................................................................................... 65 6.3 DEVICE POWER REQUIREMENTS ....................................................................................................... 66 6.4 RESULT BENCHMARKING .................................................................................................................... 66 7 DISCUSSION ............................................................................................................................................. 67 7.1 FUNCTIONAL LIMITATIONS ................................................................................................................. 67 7.2 MEASUREMENT RESULTS EVALUATION ............................................................................................ 68 7.3 FUTURE DEVELOPMENT ....................................................................................................................... 69 8 CONCLUSION ........................................................................................................................................... 69 9 REFERENCES ........................................................................................................................................... 70 4

Description:
supervisors David Gundlegĺrd(LIU) and Petr Bureš (CTU) for introductory lectures in. GPS positioning and their contributions during the thesis progress. kopior för enskilt bruk och att använda det oförändrat för ickekommersiell INTRODUCTION . GLOBAL NAVIGATION SATELLITE SYSTEM .
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.