ebook img

Archival of the water stable isotope signal in East Antarctic ice cores PDF

33 Pages·2016·4.42 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Archival of the water stable isotope signal in East Antarctic ice cores

TheCryosphereDiscuss.,doi:10.5194/tc-2016-263,2016 ManuscriptunderreviewforjournalTheCryosphere Published:17November2016 c Author(s)2016.CC-BY3.0License. (cid:13) Archival of the water stable isotope signal in East Antarctic ice cores MathieuCasado1,2,AmaelleLandais1,GhislainPicard3,ThomasMünch4,5,ThomasLaepple4, BarbaraStenni6,GiulianoDreossi6,AlexeyEkaykin7,LaurentArnaud3,ChristopheGenthon3, AlexandraTouzeau1,ValerieMasson-Delmotte1,andJeanJouzel1 1LaboratoiredesSciencesduClimatetdel’Environnement-IPSL,UMR8212,CEA-CNRS-UVSQ,GifsurYvette,France 2UniversitéGrenobleAlpes/CNRS,LIPHY,F-38000Grenoble,France 3UniversitéGrenobleAlpes/CNRS,LGGE,38400Grenoble,France 4AlfredWegenerInstituteHelmholtzCentreforPolarandMarineResearch,TelegrafenbergA43,14473Potsdam,Germany 5InstituteofPhysicsandAstronomy,UniversityofPotsdam,Karl-Liebknecht-Str.24/25,14476Potsdam,Germany 6DAIS,Ca’FoscariUniversityofVenice,Venice,Italy 7ArcticandAntarcticResearchInstitute,St.Petersburg,Russia Correspondenceto:MathieuCasado([email protected]) Abstract.TheoldesticecorerecordsareobtainedfromtheEastAntarcticplateau.Waterstableisotopesrecordsarekeyfor reconstructionsofpastclimaticconditionsbothovertheicesheetandattheevaporationsource.Theaccuracyofsuchclimate reconstructions crucially depends on the knowledge of all the processes affecting the water vapour, precipitation and snow isotopiccomposition.AtmosphericfractionationprocessesarewellunderstoodandcanbeintegratedinRayleighdistillation 5 andcomplexisotopeenabledclimatemodels.However,acomprehensivequantitativeunderstandingofprocessespotentially alteringthesnowisotopiccompositionafterthedepositionisstillmissing,especiallyforexchangesbetweenvapourandsnow. InlowaccumulationsitessuchasfoundontheEastAntarcticPlateau,thesepoorlyconstrainedprocessesareespeciallylikely toplayasignificantrole.Thislimitstheinterpretationofisotopiccompositionfromicecorerecords,specificallyatshorttime scales. 10 Here, we combine observations of isotopic composition in the vapour, the precipitation, the surface snow and the buried snow from various sites of the East Antarctic Plateau. At the seasonal scale, we highlight a significant impact of metamor- phismonsurfacesnowisotopicsignalcomparedtotheinitialprecipitationisotopicsignal.Inparticular,insummer,exchanges of water molecules between vapour and snow are driven by the sublimation/condensation cycles at the diurnal scale. Using 15 highlyresolvedisotopiccompositionprofilesfrompitsinfiveEastAntarcticsites,weidentifyacommon20cmcyclewhich cannotbeattributedtotheseasonalvariabilityofprecipitation.Altogether,thesmallerrangeofisotopiccompositionsobserved intheburiedandinthesurfacesnowcomparedtotheprecipitation,andalsothereducedslopebetweensurfacesnowisotopic compositionand temperaturecomparedto precipitation,constituteevidences ofpost-deposition processesaffectingthe vari- abilityoftheisotopiccompositioninthesnowpack.Toreproducetheseprocessesinsnow-modelsiscrucialtounderstandthe 20 linkbetweensnowisotopiccompositionandclimaticconditionsandtoimprovetheinterpretationofisotopiccompositionasa paleoclimateproxy. 1 TheCryosphereDiscuss.,doi:10.5194/tc-2016-263,2016 ManuscriptunderreviewforjournalTheCryosphere Published:17November2016 c Author(s)2016.CC-BY3.0License. (cid:13) 1 Introduction Ice is a natural archive of past climate variations. The chemical and physical compositions of the ice and of the air bubbles trappedinsideareusedaspaleoclimateproxies(JouzelandMasson-Delmotte,2010).InGreenland,icecoresproviderecon- structionsofpasttemperaturefromgreenhousegasconcentrationsandwaterisotopesbacktothelastinterglacialperiod,120 5 000yearsago(NorthGreenlandIceCoreProjectmembers,2004;NEEMcommunitymembers,2013).InAntarctica,lowac- cumulationratesenablethereconstructionofpastclimateoverseveralinterglacialperiods,e.g.420000yearsatVostok(Petit etal.,1999)and800000yearsatDomeC(EPICA,2004,2006).EventhoughreconstructionsfromicecoresfromGreenland donotextendasfarbackasfromAntarctic’sicecores,highresolutionanalysesofthecoresfromGreenlandprovideveryfine temporalresolutionandcanevenresolvetheseasonalcycle(Vintheretal.,2010).Seasonalvariationsarealsoimprintedinthe 10 snowisotopiccompositionofhighaccumulationsitesofcoastalareasofAntarctica(Morgan,1985;Masson-Delmotteetal., 2003; Küttel et al., 2012). For low accumulation sites as found on the East Antarctic Plateau, there is no consensus whether icecorerecordscanrevealtheclimaticsignalatresolutionsfinerthanmultidecadal(Baronietal.,2011)ornot(Ekaykinetal., 2002;Poletal.,2014).Ekaykinetal.(2002)analysedmultiplepitsfromVostokandidentifiedlargespatio-temporalvariations caused by post-deposition associated with surface topography and wind interactions. These non-climatic phenomena creates 15 highfrequencysignalinsinglecores,whichcallsforstackingisotopiccompositionprofilesfromseveralsnowpitstodistin- guish the common climatic signal from this post-deposition noise. Still, on the East Antarctic Plateau, a significant seasonal cycleisdepictedintheisotopiccompositionoftheprecipitation(FujitaandAbe,2006;Landaisetal.,2012;Stennietal.,2016) andofthesurfacesnow(Touzeauetal.,2016).Sofar,whetherthisseasonalcycleisarchivedornotinburiedsnow,andthus, whetherstackinganarrayofsnowpitspermitstoincreasethesignaltonoiseratioanddepictaclimaticrecordattheseasonal 20 scalefromwaterisotopicsignalremainunclear(Ekaykinetal.,2014;Altnauetal.,2015;Münchetal.,2016). Severalstudieshavefocusedonunderstandinghowistheclimaticsignalarchivedintheisotopiccompositionofsnowand iceontheEastAntarcticPlateau.SincetheearlyworksofDansgaard(1964)andLoriusetal.(1969),therelationshipbetween iceisotopiccompositionandlocaltemperaturehasbeenattributedtothedistillationassociatedwiththesuccessivecondensa- 25 tioneventsonthepathfromtheinitialevaporationsitetothedepositionsite.Nevertheless,therelationshipbetweenisotopic composition and surface temperature is not constant through time and space, due notably to processes within the boundary layer (Krinner et al., 1997), the seasonality of the precipitation between glacial and interglacial periods (Sime et al., 2009), variations in the air masses transport trajectories (Delaygue et al., 2000; Schlosser et al., 2004) and evaporation conditions (Vimeuxetal.,1999).ForCentralEastAntarctica,theglacial-interglacialisotope-temperaturerelationshipappearsquiteclose 30 tothespatialgradient(Werneretal.,inprep),butitsvalidityforinter-annualvariations(Schmidtetal.,2007)andwarmerthan present-dayconditions(Simeetal.,2009)ischallenged. In addition, under the exceptionally cold and dry conditions of the East Antarctic drilling sites, the contribution of post- deposition processes to the isotopic composition of the surface snow cannot be neglected (Town et al., 2008; Sokratov and 2 TheCryosphereDiscuss.,doi:10.5194/tc-2016-263,2016 ManuscriptunderreviewforjournalTheCryosphere Published:17November2016 c Author(s)2016.CC-BY3.0License. (cid:13) Golubev, 2009). It has been recently evidenced that summer exchanges between snow and water vapour at the surface sig- nificantlyaffecttheisotopiccompositionofthesnowbothinGreenland(Steen-Larsenetal.,2014)andontheEastAntarctic Plateau(Ritteretal.,2016).Inthefirsttopmetresofthesnowpack,isotopeexchangesinvolvedduringthesnowmetamorphism andthediffusionwithintheporousmatrixadditionallyaffecttheisotopiccompositionofthesnow(Langway,1970;Johnsen, 5 1977;WhillansandGrootes,1985).Thediffusionlengthassociatedwiththeseprocessesdependsonthefirnventilation,the snow density and the exchange rate between the atmospheric water vapour and the surface snow (Waddington et al., 2002; SchneebeliandSokratov,2004;SokratovandGolubev,2009).Thiswiderangeofprocesseshamperstheinterpretationofthe isotopicsignal,inparticularitisnotclearhowmuchoftheoriginalsignalacquiredduringtheformationoftheprecipitationis conservedduringtheburialofthesnow. 10 Due to the extreme conditions on the East Antarctic Plateau, the general understanding of the processes involved in the hydrological cycle (out of any isotopic consideration) is not straightforward, and there remains open questions such as the definitionoftheaccumulation,theestimationofthemassbalanceortheimpactofsnowmetamorphismonthealbedofeed- backloop.Inthecaseofaccumulation,thelowamountofprecipitation(Petitetal.,1982;Frezzottietal.,2007;Genthonetal., 15 2015)andtheimportantcontributionofblowingsnowinthetotaldeposition(GrootZwaaftinketal.,2013;Picardetal.,2016a) createspatchinessintheaccumulation,resultinginlargeuncertaintiesinthedeterminationoftherealprecipitationamounts. Snowmetamorphismisdifficulttoquantifyduetothelargenoisecreatedbythespatialvariability,requiringalargenumber ofsampleseveryday.Usingpassivemicrowavesatellitedata,Picardetal.(2012)arguethatthegrainindexisanindicatorof thecoarseningofsnowgrainsandshowitsincreaseinsummertobeanti-correlatedwiththeintegratedsummerprecipitation 20 amount.Supersaturationisestimatedfromthecombinedmeasurementsofhumidityandtemperature,bothofwhicharecom- plexified by the extreme conditions in Antarctica (Genthon et al., 2016). Including water isotopic composition as a tracer of theinteractionsbetweenthesnowpackandtheatmosphericboundarylayercouldhelprefineourknowledgeoftheprocesses involvedinthehydrologicalcycleintheseregions. 25 Recent studies have focused either on the monitoring of the isotopic composition of the snow pack on the East Antarctic Plateau (Touzeau et al., 2016), of the precipitation (Fujita and Abe, 2006; Landais et al., 2012; Stenni et al., 2016), or of the atmospheric water vapour (Casado et al., 2016b; Ritter et al., 2016); exploring their links to climatic parameters and the implicationsforpost-depositionprocessesduringthearchivaloftheclimaticsignalbythesnowisotopiccomposition.Here, westudytheisotopiccompositionofthecontinuumbetweenatmosphericvapour,precipitation,surfaceandburiedsnow.To 30 doso,wecombinedifferentdatasetsfromtheEastAntarcticPlateau,basedonpublishedstudiesandnewresults,inorderto qualitativelycharacterisethedifferentprocessesaffectingsurfacesnowisotopecompositionatdifferenttimescales.Wefirst reportandcomparethedifferentmethodologiesappliedforsamplingsurfacesnow,snowpits,precipitationandwatervapour intheatmosphere(Section2).Then,wepresenttheresultsfromthesedifferentstudiesincludingsurfacesnowmeasurements overseveralyears,precipitationmeasurements,vapourandsnowmeasurementsandsnowpitssampling(Section3).Finally, 3 TheCryosphereDiscuss.,doi:10.5194/tc-2016-263,2016 ManuscriptunderreviewforjournalTheCryosphere Published:17November2016 c Author(s)2016.CC-BY3.0License. (cid:13) wediscusstheimpactofpost-depositionprocessesatthesnowsurfacethroughtheexchangesbetweenthesnowandthevapour andwithinthefirn(Section4)beforesummarisingourkeyconclusions. 2 Sites,materialandmethods 2.1 Sites 5 The East Antarctic Plateau is a high elevation area, over 2500 metres above sea level (ma.s.l.) covered with snow and ice spreadingonmostoftheeasterncontinentalpartofAntarctica(Fig.1).TheEastAntarcticPlateauischaracterisedbymean annualtemperaturesbelow 30 Candaccumulationbelow80kg.m 2.yr 1,asillustratedinFig.1. ◦ − − − Annual mean surface Samples available air temperature (°C) 0o Kohnen -5 3 0o W 30oE 2S usmnomwepri t2s0 14 /15 -10 Vapour monitoring Summer 2013/14 -15 oW 6 Vostok 60 Kohnen 0o 7 snowpits E -20 from 1999 to 2012 Precipitation samples in 2000 -25 S2 oW South Pole 90 1 snowpit 0 o Summer 2012/13 9 E -30 Vostok S2 Dome C Dome C 5 snowpits 80oS from 1977 to 2015 -35 Precipitation samples 1 oE from 2008 to 2011 -40 20Wo 120 Sfroumrfa 2c0e1 s1n otow 2 015 70oS Vapour monitoring Summer 2014/15 -45 -50 150oW 1 5 0o E S1o suntohw Ppiot ilne 1978 180oW 1 snow pit in 1989 Figure1.MapofAntarcticahighlightingtheEastAntarcticPlateau(greyline=contourof2500ma.s.l.elevation)indicatingthelocation ofthesamplingsites(solidsquares)includedinthiswork.Coloursindicatetheannualmeansurfaceairtemperatureat2mmodifiedfrom theERA-interimdatasetfrom1979to2009(NicolasandBromwich,2014). 4 TheCryosphereDiscuss.,doi:10.5194/tc-2016-263,2016 ManuscriptunderreviewforjournalTheCryosphere Published:17November2016 c Author(s)2016.CC-BY3.0License. (cid:13) ThisstudymainlyfocusesonDomeC,thesiteoftheConcordiaoverwinteringstation,enablingyear-longoperationsand thusgivingtherareopportunitytostudytheentireseasonalcycleofisotopiccomposition.Weextendtheresultstotheentire East Antarctic Plateau by comparing the data from Dome C to observations from the Kohnen, Vostok and Amundsen-Scott South-PolestationsandfromthepointS2whichisoneofthedrillingsitesofthecampaignExplore-VanishjoiningDomeC 5 andVostok(seeFig.1).TheselocationsspanalargerangeofclimaticconditionsoftheEastAntarcticPlateauasillustratedon Table1. Table1.Climaticconditionsatthedifferentsitesusedinthisstudy(Alley,1980;Petitetal.,1982;WendlerandKodama,1984;Oerteretal., 2000;Ekaykinetal.,2002;vanAsetal.,2007;Lazzaraetal.,2012;Caseyetal.,2014;Genthonetal.,2015;Touzeauetal.,2016;Laepple etal.,2016) Altitude AWSmean 10mfirn Accumulation Meanwind Site Location (ma.s.l.) temperature( C) temperature( C) (kg.m 2.yr 1) speed(m.s 1) ◦ ◦ − − − Kohnen 75.0 S-0.1 E 2892 -42.2 -44.5 62-73 4.5 ◦ ◦ Vostok 78.5 S-106.8 E 3488 -55.2 -57 21 5.1 ◦ ◦ S2 76.3 S-120 E 3229 NA -55.1 21 NA ◦ ◦ DomeC 75.1 S-123.3 E 3233 -52.4 -54.3 27 3.3 ◦ ◦ SouthPole 90 S-0 E 2835 -49.3 -50.8 80 4.1 ◦ ◦ 2.2 Surfacesnowandprecipitationsampling Precipitation and surface snow have been sampled at Dome C regularly by different teams since 2008. Here, we report new measurementsofprecipitationandsurfacesnowtogetherwithpreviouslypublisheddatafromStennietal.(2016)andTouzeau 10 et al. (2016) (see Table 2). Because different teams were in charge of the different sampling activities, the protocols differ betweentheyears. Thesamplingprotocolofthe2011campaign(SUNITEDC)hasbeenpreciselydescribedbyTouzeauetal.(2016):theupper first millimetres of snow (1 to 5mm) were gathered every 1-2 weeks using a metallic blade over a surface of 20 per 20cm. 15 Thisleadstosamplesofapproximately20mL.Thesamplingareaswererandomlypickedprovidedthesurfacewasflat. DuringtheNIVOproject(from2013to2015),thesurfacesnowwasgatheredbysamplingroughly15mmofsnowwitha corningflaskoverasurfaceof20per10cm.Thisledtosamplesofapproximately50mL.Thesamplingareasof2013/14were chosenrandomlyina100per100m"cleanarea"neartheAtmosphericShelterinparallelwithdensityandspecificsurfacearea 20 (SSA)measurements(seesection2.4).Twosampleswerecollectedduringeachcollectandwepresentheretheaveragevalue ofthetwosamples.Inaddition,duringsummer2013/14,regularsamplingsofsurfaceandsub-surfacesnowwereperformed foralmost2months.Thesurfacesamplesweregatheredusingacorningflaskfrom0to3cmdepth.Thesub-surfacesamples weregatheredbythesametoolfrom3to6cmdepth.In2014/15,anadditionalsamplingtookplacewithintheGLACIOproject 5 TheCryosphereDiscuss.,doi:10.5194/tc-2016-263,2016 ManuscriptunderreviewforjournalTheCryosphere Published:17November2016 c Author(s)2016.CC-BY3.0License. (cid:13) twiceadayfromDecember2014toJanuary2015nearthelocationoftheinletusedforwatervapourmonitoring(Seesection 2.4andCasadoetal.(2016b))followingthesameprotocol. SamplingofsurfacesnowandprecipitationisotopiccompositionwerecarriedoutinparallelbytheItalianwinterovercrews 5 (programPRE-REC).Precipitationsampleshavebeencollectedallyearroundona80per120cmwoodentablestanding1m abovethegroundlevel800mfromConcordiaStationfrom2008to2011.Thesampleswerecollectedat1a.m.everydayif theamountwassufficient.Thesurfacesnowsamplesweregatheredfromanadjacentwoodenplateof80per120cmatground level.Iftheamountofsnowonthissecondtablewassufficient,snowsampleswerecollected.Bothprecipitationandsurface snowsamplesweresealedintodate-labelledplasticbagsandpreservedinfrozenstateuntildeliveryandmeasurementinItaly. 10 Fortheprecipitationsamples,theprotocolisdetailedbyStennietal.(2016).Itisimportanttonotethattheprotocolofsurface snowsamplingfromthePRE-RECcampaigndiffergreatlyfromtheprotocolsfromtheNIVOandSUNITEDCprogramsdue tothepresenceofthewoodplate. Table2.Summaryofthedifferentcampaignsofsurfacesnowandprecipitationsamplingspresentedhere. Resolution Project Location Years Reference (days) SUNITEDC(French) Surfacesnow 2011 7 (Touzeauetal.,2016) Precipitation 2008to2011 1 Partiallyin(Stennietal.,2016) PRE-REC(Italian) Surfacesnow 2012and2014 7 Thisstudy Surfacesnow 2013to2016 3 NIVO(French) Thisstudy Sub-surface 11/2013to01/2014 1 GLACIO(French) Surfacesnow 12/2014to01/2015 1 Thisstudy 2.3 Snowpitssampling 15 We present profiles of isotopic composition sampled in snow pits at Dome C : two unpublished profiles from the first pre- liminary campaigns at Dome C in 1978 and two new snow pit profiles obtained in 2014/15, dug 50m apart in parallel with surfacesnowsamplingandvapourmonitoring.Foroneofthem,snowtemperatureanddensityprofileswereestablished.The samples were taken in plastic flasks and analysed later on in the laboratory. To extend the results to other sites of the East AntarcticPlateau,weadditionallypresentsnowpitsamplingsperformedthroughseveralcampaignsoverdifferentsitesofEast 20 Antarcticawhichwererealisedandanalysedbydifferentteams. 6 TheCryosphereDiscuss.,doi:10.5194/tc-2016-263,2016 ManuscriptunderreviewforjournalTheCryosphere Published:17November2016 c Author(s)2016.CC-BY3.0License. (cid:13) Table3.Summaryofthedifferentsnowpitspresentedinthisstudy. Resolution Number Station Years Reference (cm) ofpits 2001to2015 2to5 6 Ekaykinetal.(2002,2004,2009) Vostok 2012/13 3 1 Touzeauetal.(2016) Kohnen 2014/15 3 2 Thisstudy 1977/78 1to3 2 Thisstudy DomeC 2012/13 3 1 Touzeauetal.(2016) 2014/15 1.5to5 2 Thisstudy S2 2012/13 3 1 Touzeauetal.(2016) 1978 2 1 Jouzeletal.(1983) SouthPole 1989/90 1.1 1 Whitlowetal.(1992) Two new isotopic composition profiles from Kohnen are extracted from trenches, following the methodology reported in Münchetal.(2016)butdownto3.6mdepthsampledata3cmverticalresolution.Thetwoprofilesareseparatedbyapprox- imately 500m. A large number of snow pits from Vostok station are presented here, they have been previously described in Ekaykinetal.(2002,2004)andEkaykinandLipenkov(2009).Wecombinetheresultsfromsixsnowpitswithdepthsvarying 5 from2.5mto12mandaminimumresolutionof5cm.Inaddition,snowpitsfromtheExplore-Vanishcampaignareincluded comprisingone3.5mdeepsnowpitfromVostok,one2.6mdeepfromS2andone2mdeepfromDomeC,alloftheminclud- ing triple isotopic compositions (δ18O, δ17O and δD) published in Touzeau et al. (2016). Finally, we include two snow pits fromSouthPole(Jouzeletal.,1983;Whitlowetal.,1992). 2.4 Atmosphericandsnowsurfacemonitoring 10 Water vapour isotopic composition has been measured at Kohnen station in 2013/14 (Ritter et al., 2016) and at Dome C in 2014/15 (Casado et al., 2016b). In both cases, to reduce the noise, the dataset were averaged to hourly resolution and cover approximately one month. In parallel to water vapour isotopic composition monitoring, surface snow was sampled once to twiceaday.Foraperiodfrom27hoursto72hours,thesurfacesnowwassampledeveryhourtoevaluatethediurnalcycleof boththevapourandthesnowisotopiccomposition(seesection2.2). 15 Dome C hosts a large set of instruments probing the troposphere and the firn justifying to focus this study on this site. Here, we make use of temperature, wind speed and humidity measurements from the 45m meteorological profiling system described by Genthon et al. (2013). The temperature and humidity observations are performed using ventilated thermohy- grometersHMP155andarethereforefreeofradiationbiases(Genthonetal.,2011).Thetemperaturereanalysisproduct(ERA 20 interim) has been compared to ventilated automatic weather station data (AWS) from Genthon et al. (2013) and we found 7 TheCryosphereDiscuss.,doi:10.5194/tc-2016-263,2016 ManuscriptunderreviewforjournalTheCryosphere Published:17November2016 c Author(s)2016.CC-BY3.0License. (cid:13) a good agreement at the seasonal scale and fairly good agreement at the event scale (not shown here). Depending on data availability(astheventilatedAWSwereinstalledatDomeCin2009),wewilluseeitherERA-interimormeasurementsfrom AWS. An intercomparison when the two datasets are overlapping reveals that most of the variability from the day-to-day to the seasonal and inter-annual scales in captured by ERA-interim and major differences appear only for the evaluation of the 5 diurnal cycle (not shown). Wind speed and direction are measured using Young 05103 and 05106 aerovanes. Snow surface temperatureismeasuredwithaCampbellscientificIR120infraredprobelocated2mabovegroundlevel. Finally, we include grain index observations (Picard et al., 2012) obtained by satellite measurements. The grain index is used as an indicator of the evolution of the size of the snow grains, and provides a qualitative evaluation of metamorphism. 10 Whenavailable,weincludeSurfaceSensitiveArea(SSA)measurementsalsoasanindicatorofmetamorphism(Liboisetal., 2015).Theseopticalmethodsarecompletedwithsnowsurfaceobservations.Frostdepositionwasmonitoredwithatimelapse ofthegrowthofhoaratthesurface(seethevideoathttps://vimeo.com/170463778).Animageprocessingscriptwasusedto characterisethegrowthofafewcrystalsatthesurfaceofthesastruga. 2.5 Modellingapproaches 15 To highlight the impact of post-deposition processes, it is necessary to present how the surface snow isotopic composition differs from the initial precipitation signal formed during the Rayleigh distillation. Here, we make use of the Rayleigh-type Mixed Cloud Isotope Model (MCIM) developed by Ciais and Jouzel (1994) which computes the Rayleigh distillation along theairmassestrajectories.Themodelincludesmicrophysicalpropertiesofcloudsandinparticulartakesintoaccountmixed phaseconditions.ItistunedwithtriplesnowisotopiccompositionmeasuredalongatransectfromTerraNovaBaytoDomeC 20 (Landaisetal.,2008).ThistuninghasbeenprovensuitabletoevaluatethevariationsofisotopiccompositionatDomeC(Win- kler,2012).Thiswillprovideacomparisonbetweenthespatialandthetemporalslopeofprecipitationisotopiccompositionat theseasonalscale. 3 Results Inthissection,wereviewtheresultsfromthedifferentdatasets,illustratingthedifferentstepsofthearchivalofclimaticsignal 25 bythesnowisotopiccomposition,fromtheprecipitationtotheburiedsnow(seeFig.2). WefirstpresentprecipitationisotopiccompositionvariationsbasedondatafromStennietal.(2016)andadditionalnewdata. Wethenpresentournewdataofsurfacesnowisotopiccompositioncomparedtothevariationsin2msurfaceairtemperature, thegrainsizeindexandtheprecipitationisotopiccomposition,inordertoevaluateattheday-to-dayandattheseasonalscales 30 thedifferencebetweensurfacesnowandprecipitationisotopicsignals.Wethenreportshorttimescaleparallelmeasurements ofvapourandsurfacesnowisotopiccomposition,providinginputsononeofthemajorcomponentofsummermetamorphism onsurfacesnowisotopiccomposition:thediurnalcyclesofsublimation/condensation.Wefinallycomparetheisotopiccom- 8 TheCryosphereDiscuss.,doi:10.5194/tc-2016-263,2016 ManuscriptunderreviewforjournalTheCryosphere Published:17November2016 c Author(s)2016.CC-BY3.0License. (cid:13) Temperature Free gradient atmosphere Eddy diffusion Precipitation input Atmospheric Sublimation condensation boundary Ri P layer v v Exchange Snow Ri with the precipitation P vapour Molecular Surface Ri P diffusion snow 0 sat Interstitial vapour Ri S Molecular diffusion in the interstitial air Deeper Ri snow N Figure2.Schematicofthedifferentcontributionstothesnowisotopiccomposition(Ri standsforthecompositionofisotopeiinthephase X X)inremotePolarRegions:abovethesurface,boththeprecipitationandthesublimation/condensationcyclescancontributetothesurface composition; in the open-porous firn below the surface, the snow can exchange with the air below the surface, enhanced or not by wind pumping.Deeperinthefirn,moleculardiffusionintheinterstitialairaffectsthesnowisotopiccomposition. position of the surface, sub-surface and buried snow to evaluate the processes involved during the archival of the isotopic compositionsignal. 3.1 Precipitationisotopiccomposition Inthissection,wepresentprecipitationisotopiccompositiondataatDomeCfromStennietal.(2016)depicting3complete 5 annualcyclesfrom2008to2010,completedbynew,unpublisheddatafrom2011(Fig.3). AtDomeC,theprecipitationisotopiccompositionpresentsalargevariabilityattheday-to-dayscaleandaregularseasonal cycle.Attheseasonalscale,precipitationisotopiccompositionisrelativelywellcorrelatedtolocaltemperaturewithaslopeof 0.46‰ C 1,thisslopeissimilartotheoneobtainedbyStennietal.(2016)fortheyears2008to2010of0.49 0.02‰ C 1 ◦ − ◦ − ± 10 (R2=0.63,n=500).Noapparentlagbetweentemperatureandisotopiccompositionvariationsisobserved. Comparedtootheryear-longprecipitationsamplingontheEastAntarcticPlateau,thisslopeislowerthanatDomeF(0.78 ‰/ C withR2=0.78(FujitaandAbe,2006))andhigherthanatVostok(0.26‰/ C withR2=0.58(Touzeauetal.,2016)). ◦ ◦ Insummer,wesystematicallyobserveprecipitationδ18Oabove-40‰atDomeC,whereasinwinter,δ18Ovaluesbelow-65 15 ‰aresystematicallyobserved. 9 TheCryosphereDiscuss.,doi:10.5194/tc-2016-263,2016 ManuscriptunderreviewforjournalTheCryosphere Published:17November2016 c Author(s)2016.CC-BY3.0License. (cid:13) ‰)-40 n ( o-50 ati pit ci-60 600 e pr O 500 8 -70 G 1δ ra 400in In 300d e x 200 (A -20 .U .) 100 C)-30 e (°-40 0 ur at-50 er p m-60 Te 0.8(mS -70 mn 0.4 wow -80 0.0.efa .)ll 1/2008 7/2008 1/2009 7/2009 1/2010 7/2010 1/2011 7/2011 Figure3.Fouryears(2008to2011)ofmonitoringatDomeCofthevariationsofprecipitationisotopiccompositionfromthePRE-REC campaign(Stennietal.,2016)(δ18O,green,dots:rawdata,line:monthlyaverage)insurfaceairtemperaturefromthereanalysisERA-interim (redline),grainindexfromsatelliteobservations(blackline)andsnowfallamountcalculatedfromthereanalysisERA-interim(blackbars). 3.2 Surfacesnowisotopiccomposition Here,wepresentmeasurementsofsurfacesnowisotopiccompositionatDomeCfromDecember2010toJanuary2016(Fig. 4) combining results from Touzeau et al. (2016) with new data presented for the first time in this study from the PRE-REC, NIVOandGLACIOprojects.Thedatasetincludesthreecompleteannualcyclesofsurfacesnowisotopiccomposition(in2011, 5 2014and2015)andpartofthe2012cycle,withtherespectivetemperaturevariationsfromAWS(Genthonetal.,2013)and theprecipitationevents(fromreanalysisproducts).NoteherethatweusetheavailabledatafromAWSinthissectionandnot reanalysisproductsasinsection3.1(seesection2.4). First,wefocusonthespatialvariabilityimpactonthemeasurements.Todisentanglethelocal(below1km)spatialvariabil- 10 ity from the temporal variations of the surface snow isotopic composition (Fig. 4), we compare the duplicate measurements realisedduringtheyear2014(Fig.5).Indeed,forthisyear,severalsetsofmeasurementsareavailable:onesampledatafixed locationonawoodsurface(PRE-REC,bluedots)andonesampledrandomlyfromthesnowsurfaceinalargefield(NIVO, 10

Description:
7Arctic and Antarctic Research Institute, St. Petersburg, Russia . the atmospheric water vapour (Casado et al., 2016b; Ritter et al., 2016); exploring
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.