ARCHITECTING AIRCRAFT POWER DISTRIBUTION SYSTEMS VIA REDUNDANCY ALLOCATION A Dissertation Presented to The Academic Faculty by Angela Campbell In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Aerospace Engineering Georgia Institute of Technology December 2014 Copyright (cid:13)c 2014 by Angela Campbell ARCHITECTING AIRCRAFT POWER DISTRIBUTION SYSTEMS VIA REDUNDANCY ALLOCATION Approved by: Professor Dimitri N. Mavris, Dr. Elena Garcia Committee Chair School of Aerospace Engineering School of Aerospace Engineering Georgia Institute of Technology Georgia Institute of Technology Professor Dimitri N. Mavris, Advisor Dr. Kirsten Duffy School of Aerospace Engineering NASA Glenn Research Center Georgia Institute of Technology Professor Daniel Schrage Dr. Gerald Brown School of Aerospace Engineering NASA Glenn Research Center Georgia Institute of Technology Date Approved: 14 November 2014 DEDICATION To my family, your love and support made my dreams possible. iii ACKNOWLEDGEMENTS So many people made this work possible, and I would like to thank everyone. I will begin with my husband. Thank you for being at my side for the past four and half years. Every day you provide me with the love and encouragement that I needed to reach my goals. Next, I would like to thank my parents. Throughout my life you have made me feel loved, and you gave me the confidence that I needed to believe that I could achieve any goal. I would also like to thank all of my committee members. Dr. Mavris, thank you for your guidance over my last five years at Georgia Tech. Reaching my academic goals would not have been possible without your assistance. Dr. Garcia and Dr. Schrage, thank you for your support of my work during my time at Georgia Tech. Lastly, I would like to thank Dr. Brown and Dr. Duffy of NASA Glenn Research Center for their mentorship for the past four years. I would also like to thank Dr. Ajay Misra and George Stefko of NASA Glenn Research Center for their support through the NASA Graduate Student Research Program(GSRP).TheGSRPmademuchoftheworkpresentedinthisthesispossible. iv TABLE OF CONTENTS DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iv LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxix I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 The Turboelectric Aircraft Concept . . . . . . . . . . . . . . . . . . 3 1.2 Previous TeDP Studies . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 System Reliability Considerations . . . . . . . . . . . . . . . . . . . 10 II METHODOLOGY OVERVIEW . . . . . . . . . . . . . . . . . . . . 15 2.1 The Engineering Decision Process . . . . . . . . . . . . . . . . . . . 15 2.2 Formulation of RAAPS and Research Questions . . . . . . . . . . . 18 2.2.1 Define the Problem . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.2 Select a Baseline . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.3 Evaluate the Baseline to Determine Gaps . . . . . . . . . . . 33 2.2.4 Identify Alternatives . . . . . . . . . . . . . . . . . . . . . . . 34 2.2.5 Identify Candidate Architectures . . . . . . . . . . . . . . . . 35 2.2.6 Evaluate Candidate Architectures . . . . . . . . . . . . . . . 35 2.2.7 Select a Design . . . . . . . . . . . . . . . . . . . . . . . . . . 36 III BASELINE SYSTEM EVALUATION . . . . . . . . . . . . . . . . . 37 3.1 Capacity Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.1 Graph Theory Application . . . . . . . . . . . . . . . . . . . 39 3.1.2 Adjacency Matrix . . . . . . . . . . . . . . . . . . . . . . . . 40 v 3.1.3 Calculating Component Capacities . . . . . . . . . . . . . . . 41 3.2 Weight Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.1 Cable Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2.2 Converter and Machine Sizing . . . . . . . . . . . . . . . . . 54 3.3 Failure Rate Requirement . . . . . . . . . . . . . . . . . . . . . . . . 56 3.3.1 Reliability of Complex Systems . . . . . . . . . . . . . . . . . 57 3.3.2 Stochastic Flow Networks . . . . . . . . . . . . . . . . . . . . 62 3.3.3 Component Reliability . . . . . . . . . . . . . . . . . . . . . 62 3.3.4 Baseline Reliability Results . . . . . . . . . . . . . . . . . . . 83 3.4 Baseline Evaluation Summary . . . . . . . . . . . . . . . . . . . . . 90 IV IDENTIFY ALTERNATIVES . . . . . . . . . . . . . . . . . . . . . . 92 4.1 Architecture Options . . . . . . . . . . . . . . . . . . . . . . . . . . 92 4.1.1 Required Components . . . . . . . . . . . . . . . . . . . . . . 92 4.1.2 Redundancy Considerations . . . . . . . . . . . . . . . . . . 95 4.2 Technology Options . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 4.3 Hypothesis 2 and Experiment Plan . . . . . . . . . . . . . . . . . . . 105 V ARCHITECTURE DOWN-SELECTION . . . . . . . . . . . . . . . 107 5.1 Problem Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 107 5.1.1 Architecture Design Variables . . . . . . . . . . . . . . . . . 107 5.1.2 Component Design Variables . . . . . . . . . . . . . . . . . . 110 5.2 Methods for Architecture Down-selection . . . . . . . . . . . . . . . 111 5.2.1 Design of Experiments . . . . . . . . . . . . . . . . . . . . . 111 5.2.2 Global Optimization Methods . . . . . . . . . . . . . . . . . 112 5.2.3 Optimization Methods Observations . . . . . . . . . . . . . . 118 5.3 Requirements and Objective Evaluation . . . . . . . . . . . . . . . . 119 5.3.1 Capacity Requirement . . . . . . . . . . . . . . . . . . . . . . 119 5.3.2 Weight Calculation . . . . . . . . . . . . . . . . . . . . . . . 120 5.3.3 Reliability Requirement . . . . . . . . . . . . . . . . . . . . . 129 vi 5.3.4 Solution Fitness . . . . . . . . . . . . . . . . . . . . . . . . . 130 5.4 Down-selection Implementation and Results . . . . . . . . . . . . . . 131 5.4.1 Genetic Algorithm Optimization . . . . . . . . . . . . . . . . 131 5.4.2 Particle Swarm Optimization . . . . . . . . . . . . . . . . . . 138 5.4.3 Ant Colony Optimization . . . . . . . . . . . . . . . . . . . . 141 5.5 Down-selection Observations . . . . . . . . . . . . . . . . . . . . . . 152 5.5.1 Optimization Method Comparison . . . . . . . . . . . . . . . 156 5.5.2 Selected Architectures . . . . . . . . . . . . . . . . . . . . . . 157 VI ARCHITECTURE EVALUATION . . . . . . . . . . . . . . . . . . . 168 6.1 Component Dynamic Modeling . . . . . . . . . . . . . . . . . . . . . 168 6.1.1 Rectifier Model . . . . . . . . . . . . . . . . . . . . . . . . . 168 6.1.2 Inverter Model . . . . . . . . . . . . . . . . . . . . . . . . . . 175 6.1.3 Cable Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 180 6.1.4 Machine Modeling . . . . . . . . . . . . . . . . . . . . . . . . 180 6.2 System Dynamic Modeling . . . . . . . . . . . . . . . . . . . . . . . 180 6.2.1 One Motor Model . . . . . . . . . . . . . . . . . . . . . . . . 181 6.2.2 Baseline System Model . . . . . . . . . . . . . . . . . . . . . 188 6.2.3 Architecture 1 Steady-State Results . . . . . . . . . . . . . . 196 6.2.4 Architecture 2 Engine 1 Failure Results . . . . . . . . . . . . 201 6.2.5 Architecture 3 Engine 2 Failure Results . . . . . . . . . . . . 207 6.2.6 Performance Model Observations . . . . . . . . . . . . . . . . 213 6.3 Decreasing Model Runtime . . . . . . . . . . . . . . . . . . . . . . . 213 6.3.1 Literature Search . . . . . . . . . . . . . . . . . . . . . . . . 214 6.3.2 Model Alteration Approach . . . . . . . . . . . . . . . . . . . 217 6.4 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230 6.4.1 Stability Analysis Approaches . . . . . . . . . . . . . . . . . 232 6.4.2 Admittance Space Stability Criterion . . . . . . . . . . . . . 233 6.5 Stability Analysis Results . . . . . . . . . . . . . . . . . . . . . . . . 239 vii 6.5.1 DC Stability Analysis Results . . . . . . . . . . . . . . . . . 240 6.5.2 AC Stability Analysis Results . . . . . . . . . . . . . . . . . 244 6.5.3 Stability Analysis Observations . . . . . . . . . . . . . . . . . 256 6.6 Architecture Evaluation Observations . . . . . . . . . . . . . . . . . 257 VIIARCHITECTURE SELECTION AND CONCLUSIONS . . . . . 258 7.1 Methodology Review . . . . . . . . . . . . . . . . . . . . . . . . . . 258 7.2 Selected Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 262 7.2.1 Detailed Design Considerations . . . . . . . . . . . . . . . . . 263 7.3 Hypotheses Review . . . . . . . . . . . . . . . . . . . . . . . . . . . 264 7.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 7.4.1 Methodology Framework . . . . . . . . . . . . . . . . . . . . 266 7.4.2 Capacity Evaluation Method . . . . . . . . . . . . . . . . . . 266 7.4.3 Cable Sizing Approach . . . . . . . . . . . . . . . . . . . . . 266 7.4.4 Power System Reliability Calculation Method . . . . . . . . . 267 7.4.5 Architecture Optimization Strategy . . . . . . . . . . . . . . 267 7.4.6 Architecture Insights . . . . . . . . . . . . . . . . . . . . . . 268 7.5 Future Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268 7.5.1 Superconducting Component Reliability . . . . . . . . . . . . 268 7.5.2 Shock Modeling . . . . . . . . . . . . . . . . . . . . . . . . . 269 7.5.3 Protection Components . . . . . . . . . . . . . . . . . . . . . 269 7.5.4 Multi-state Analysis . . . . . . . . . . . . . . . . . . . . . . . 270 7.5.5 Large Signal Stability . . . . . . . . . . . . . . . . . . . . . . 270 7.5.6 Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . 270 7.6 Final Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271 APPENDIX A — AC STABILITY RESULTS . . . . . . . . . . . . . 272 REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303 viii LIST OF TABLES 1 NASA Subsonic Fixed Wing Program Goals . . . . . . . . . . . . . . 2 2 Commercial aircraft generator capacities . . . . . . . . . . . . . . . . 28 3 Commercial aircraft battery capacities . . . . . . . . . . . . . . . . . 29 4 Baseline adjacency matrix . . . . . . . . . . . . . . . . . . . . . . . . 40 5 Baseline four-step connections . . . . . . . . . . . . . . . . . . . . . . 42 6 Room temperature component efficiencies . . . . . . . . . . . . . . . 43 7 Component capacities required by the engine-out scenario . . . . . . 44 8 Updated component capacities . . . . . . . . . . . . . . . . . . . . . . 45 9 Cable model variable list . . . . . . . . . . . . . . . . . . . . . . . . . 47 10 Cable model parameters . . . . . . . . . . . . . . . . . . . . . . . . . 52 11 Bus weights (kg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 12 Component power to weight ratios . . . . . . . . . . . . . . . . . . . 55 13 Baseline component weights . . . . . . . . . . . . . . . . . . . . . . . 56 14 Room temperature component failure rates . . . . . . . . . . . . . . . 65 15 Path set initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 16 Baseline adjacency matrix . . . . . . . . . . . . . . . . . . . . . . . . 70 17 Baseline 4-step connections . . . . . . . . . . . . . . . . . . . . . . . . 71 18 Baseline 3-step connections . . . . . . . . . . . . . . . . . . . . . . . . 71 19 Baseline 2-step connections . . . . . . . . . . . . . . . . . . . . . . . . 72 20 Baseline system path sets . . . . . . . . . . . . . . . . . . . . . . . . 72 21 Updated path sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 22 Baseline path sets used for decomposition . . . . . . . . . . . . . . . 74 23 Component Reliabilities . . . . . . . . . . . . . . . . . . . . . . . . . 79 24 Example system path sets . . . . . . . . . . . . . . . . . . . . . . . . 79 25 System weights (lbs) for maximum reliability cases . . . . . . . . . . 85 26 Superconducting cable parameters . . . . . . . . . . . . . . . . . . . . 124 27 Component weight calculation variables . . . . . . . . . . . . . . . . . 128 ix 28 GA component settings . . . . . . . . . . . . . . . . . . . . . . . . . . 135 29 GA component capacities and weights (lbs) . . . . . . . . . . . . . . . 135 30 PSO component settings . . . . . . . . . . . . . . . . . . . . . . . . . 142 31 PSO component capacities and weights (lbs) . . . . . . . . . . . . . . 142 32 Ant colony component settings . . . . . . . . . . . . . . . . . . . . . 152 33 Ant colony component capacities and weights (lbs) . . . . . . . . . . 152 34 Outcome of optimization methods . . . . . . . . . . . . . . . . . . . . 156 35 Architecture motor requirement and weight . . . . . . . . . . . . . . . 159 36 Rectifier design variable settings . . . . . . . . . . . . . . . . . . . . . 173 37 Single motor system model design variables . . . . . . . . . . . . . . . 182 38 Baseline system model design variables . . . . . . . . . . . . . . . . . 192 39 DQ motor model parameters . . . . . . . . . . . . . . . . . . . . . . . 227 x
Description: