MI67CH21-Schleper ARI 6August2013 11:13 Archaea in Biogeochemical Cycles Pierre Offre, Anja Spang, and Christa Schleper g or DepartmentofGeneticsinEcology,UniversityofVienna,A-1090Wien,Austria; ws. email:[email protected],[email protected],[email protected] evienly. nualruse o w.anonal ws wer om or p d fr4. F e1 oad20/ nl1/ w0 on Do 457. brary 7-Li obiol. 2013.67:43sity of Arizona - AFJTuinhrnnseetuA2p.6nuR,nbe2ulvi0as.lh1MR3edeicvorieonwbliinoofel.Ma2si0ca1roR3b.eio6vl7ioeg:4wy3ii7sn–o5An7dlivnaenacteon KaArbcehsyatweraao,crbtdiosgeochemicalcycles,metabolism,carbon,nitrogen,sulfur Micrniver micro.annualreviews.org ArchaeaconstituteaconsiderablefractionofthemicrobialbiomassonEarth. ev. y U Thisarticle’sdoi: LikeBacteriatheyhaveevolvedavarietyofenergymetabolismsusingor- Rb 10.1146/annurev-micro-092412-155614 u. ganicand/orinorganicelectrondonorsandacceptors,andmanyofthemare nn Copyright(cid:2)c 2013byAnnualReviews. abletofixcarbonfrominorganicsources.Archaeathusplaycrucialrolesin A Allrightsreserved the Earth’s global geochemical cycles and influence greenhouse gas emis- sions.Methanogenesisandanaerobicmethaneoxidationareimportantsteps in the carbon cycle; both are performed exclusively by anaerobic archaea. OxidationofammoniatonitriteisperformedbyThaumarchaeota.Theyrep- resenttheonlyarchaealgroupthatresidesinlargenumbersintheglobal aerobic terrestrial and marine environments on Earth. Sulfur-dependent archaeaareconfinedmostlytohotenvironments,butmetalleachingbyaci- dophiles and reduction of sulfate by anaerobic, nonthermophilic methane oxidizershaveapotentialimpactontheenvironment.Themetabolismsof a large number of archaea, in particular those dominating the subsurface, remaintobeexplored. 437 MI67CH21-Schleper ARI 6August2013 11:13 Contents INTRODUCTION............................................................... 438 THEDOMAINARCHAEA....................................................... 438 ARCHAEALMETABOLISMSANDBIOGEOCHEMICALCYCLES............. 440 CarbonCycle.................................................................. 440 NitrogenCycle................................................................. 445 SulfurCycle.................................................................... 447 CONCLUSIONSANDPERSPECTIVES......................................... 450 INTRODUCTION g or Allcurrentlyknownlifeformsgainthefreeenergyrequiredtomeettheenergeticcostofmain- s. w tenance,growth,andreproductionthroughenzymaticallycatalyzedredoxreactions.Lifeexploits evienly. manypairsofelectrondonorsandacceptors(redoxpairs)forthegenerationofbiochemicalenergy nualruse o andtheassimilationofnutrients,butsinglespeciesuseonlyaspecificsubsetofthoseredoxpairs. ww.ansonal Ttiohnessoufrevlievcatlroofnadllonliovirnsganodrgaacnceispmtosrtsh,wushdicehpaernedpsroensetnhteincolinmstitaendtasmupopulnytosfindtifhfeerbeinotspchoemrebiannad- wer om or p thereforeneedtobeconstantlyrecycled.Thecyclingofthesechemicalsubstancesemergesfrom d fr4. F geophysicalprocessesandthecombinedmetabolismsofalllifeforms(96).Theseself-organized e1 nutrient cycles, which are increasingly influenced by human activities, can be represented as nload1/20/ networks of processes, connecting different reservoirs of substances and defining biogeochem- own 0 ical cycles for various chemical elements and molecules. Owing to their versatile metabolisms, Do 457. brary mbuiiclrdoinogrgbanloiscmkssodfrilvifee,mhoysdtroogfetnh,ecbairobloong,icnailtrflougxeens,osfutlfhuer,eolexmygeennts,—anpdarptihcouslparhloyrtuhse—saixndmtahjours 7-Li 013.67:43Arizona - s1h9a2Fp6eo,rtohmneloybriBeoagtchetaoencrhihaeamalnfidsatrcEyeunoktfauorryuya,rspwinleacrneeeVtco(l3an2ds)ii.mdeirreVdetronacdosnktyribcouitneesdigtnhiefictearnmtlybitooggeloocbhaelmniusttrriyenint obiol. 2sity of c5y0clyeesa.rTshlaeteArr(c1h3a7e)a.,Uconntsiltittuhteinegartlhye1t9h9ir0ds,futhnedyamweernetapledrocmeivaeindomfaliifnel,ywaesreangorotudpesocrfimbeidcruonotri-l Micrniver ganismsthrivinginextremehabitatsthathave,exceptforthemethanogens(130),littleinfluence ev. y U onglobalnutrientcycling.However,thisviewbegantochangewhenmolecularbiologicaltech- Rb niqueswereintroducedintomicrobialecology.Thediscoverythatarchaeaarefoundinoceanic u. n plankton(23,35)hastriggeredahugenumberoffollow-upstudiesshowingthatarchaearepre- n A sent an abundant and diverse group of microorganisms in the whole biosphere and suggesting that they have a significant impact on nutrient cycling. In addition to cultivation of novel ar- chaeal strains, culture-independent techniques, in particular molecular biological, biochemical, andisotope-basedmethods,havesinceremainedinstrumentalforrecognizingandcharacterizing novelarchaealmetabolismsandforestimatingtheirenvironmentalimpact.Throughthesestudies ithasbecomeincreasinglyevidentthatarchaeaareimportantplayersinbothcarbonandnitrogen cycling.Inthisreview,thedistributionoftheArchaeainthebiosphereandtheirroleinextant biogeochemicalcyclesarediscussedinlightofrecentdiscoveries. THEDOMAINARCHAEA Woese&Fox(137)andWoeseetal.(138)providedthefirstevidencethatArchaeaconstitutea thirddomainalongsideBacteriaandEukaryawithinthephylogenetictreeoflife.Thisfindingwas · · 438 Offre Spang Schleper MI67CH21-Schleper ARI 6August2013 11:13 Crenarchaeota Thermoproteales/Sulfolobales/Desulfurococcales/Acidilobales/Fervidicoccales Geoarchaeota Geoarchaeota Thaumarchaeota Hot Water Crenarchaeotic Group III ALOHA group/Group 1.1c/psL12 group/Marine Benthic Group A Group 1.1a (and group 1.1a associated)/Group 1.1b Aigarchaeota (Hot Water Crenarchaeotic Group I) Aigarchaeota and candidate lineages Miscellaneous Crenarchaeotal Groups Deep Sea Archaeal Group/Marine Benthic Group B Ancient Archaeal Group/Marine Hydrothermal Vent Group 2 Korarchaeota Korarchaeota g or Euryarchaeota ws. Methanosarcinales/Methanocellales/Methanomicrobiales/ANME lineages 1–3/ evienly. Halobacteriales/Marine Group 4 nualruse o AThrcehrmaeoopgllaosbmaaletsales/Aciduliprofundum sp./Methanoplasmatales/Marine Group 2, 3, 5 w.anonal Marine Benthic Group E/South African Goldmine Group/Miscellaneous + Deep Sea Euryarchaeota Group ws ed from w14. For per NMMaeentthhoaasannlooinbcoaacrcucteamrlei assple.s nload1/20/ Methanopyrales w0 on Thermococcales Do 457. brary Micrarchaeum sp. 7-Li Parvarcheum sp./Deep Sea Hydrothermal Vent Group 6 013.67:43Arizona - Nanoarchaeota obiol. 2sity of FScighuemreat1icrepresentationofthephylogeneticdiversityofarchaeawiththemajorlineagesasreferredtointhetext.Themultifurcations ev. Micry Univer itnodriecaadteertshwathtohearpelancoetmfaemntiloiafrmwoisthtlainrcehagaeeas.vParhiyelsaiinndgirffaeyretynptepfhacyelohgaevneetnioctabneaelynsevsa.liTdahteedtr.eeisintendedtogiveageneralorientation Rb u. n n overwhelmingly corroborated by genomic and biochemical data showing that all archaea share A uniquemembranesandhavecellwallsthatdifferfromthoseofbacteria(36).Furthermore,theyuse distinctiveinformationalprocessingmachineries(e.g.,replicationandtranscription)consideredto bederivedfromacommonancestorwithEukarya(36).Sincetheirdiscoveryasaseparatedomain, thenumberofknowntaxawithintheArchaeahasbeenexpandedcontinuously.AsofNovember 2,2012,therewere116archaealgenerarepresenting450cultivatedandvalidlydescribedspecies (http://www.bacterio.cict.fr).However,mostofthearchaealdiversity,currentlyreferencedin publicdatabases,remainsuncultivated(117)andisknownonlyfrom16SrRNAgenesequences obtainedfrommolecularsurveys(24).Manyoftheseuncultivatedarchaeaareonlydistantlyrelated to their closest cultivated relatives and specify numerous lineages representing a wide range of taxonomicranks,uptothephylumlevel.Cultivatedanduncultivatedarchaeallineageshavebeen classifiedinafewhigh-ranktaxa(Figure1),andashortoverviewofcurrentlyproposedarchaeal phylaisprovidedbelow. www.annualreviews.org • ArchaeainBiogeochemicalCycles 439 MI67CH21-Schleper ARI 6August2013 11:13 Most cultivated archaea are assigned to two major archaeal phyla, Euryarchaeota and Crenarchaeota, that were originally defined by Woese et al. (138). Euryarchaeota include eight taxonomicclasses(i.e.,Methanopyri,Methanococci,Methanobacteria,Methanomicrobia,Archaeoglobi, MCG: Miscellaneous Halobacteria,Thermococci,andThermoplasmata)thatincludemethanogens,methane-oxidizingar- CrenarchaeotalGroup chaea,denitrifiers,sulfatereducers,ironoxidizers,andorganotrophs(61).Membersofthisphylum DSAG: DeepSea aregloballydistributed,andsomelineages,oftenuncultivatedones,areabundantinmarinewaters, ArchaealGroup soils,andsediments(117,128),whereasmanyofthelong-knowneuryarchaeotesinhabitextreme environmentsandarethereforerestrictedtospecificgeographicareas.Thehyperthermophilic, parasitic Nanoarchaeum equitans, initially suggested to represent a new candidate phylum (49), likelyconstitutesanadditionalfast-evolvinglineageoftheEuryarchaeota(14). Crenarchaeotacontainonlyonetaxonomicclass(i.e.,Thermoprotei)andfivetaxonomicorders (i.e., Acidilobales, Desulfurococcales, Fervidicoccales, Sulfolobales, and Thermoproteales), two of which (AcidilobalesandFervidicoccales)werediscoveredonlyrecently(100,106).Allcrenarchaeoteshave org beenfoundinhotenvironmentssuchasacidicterrestrialhotspringsandsubmarinehydrothermal ws. vents,aswellassmolderingrefusepiles(61). evienly. FeworganismsoftherecentlydefinedphylumThaumarchaeotahavebeencultivated(124),all w.annualronal use o oaalnfsdowahoricecchuforguiannindexeintnrehermiggyehebnnyuvmairmboemnrmsoneinniatmsoaixnriidcnlauetdiaoinnndg.Ofhroergtshasnwpirasitmnegrsse.onfvtihriosnpmheynlutsm,saoriels,galonbdaslleydidmisetrnitbsuatnedd ws wer Onthebasisofgenomicdata,additionalarchaealphylahaverecentlybeenproposed.They om or p includeKorarchaeota(5,29),Aigarchaeota(94),andGeoarchaeota(67).Theaffiliationofseveral d fr4. F deep-branching lineages such as the Miscellaneous Crenarchaeotal Group (MCG), Deep Sea e1 oad20/ ArchaealGroup(DSAG),andAncientArchaealGroup(AAG)isstillunclear(43).Membersof wnl01/ thesenewphylahavebeenfoundintheterrestrialandmarinesubsurface(128)butalsoinhot on Do springsanddeep-seahydrothermalsystems,andnorepresentativehasyetbeenobtainedinpure 457. brary culture. 7-Li 013.67:43Arizona - ARCHAEALMETABOLISMSANDBIOGEOCHEMICALCYCLES Microbiol. 2niversity of Aimacnraodclrhiepmaretophabalacanmtb2eolyt0fa%rtbheopeolrifAsemasrelcslnhsptauretsoahtk.aeaOinrdynotohmttheeiensparbinnoadtsoiugsccreotoaifuoncpnewloolafftcetomhruseinc(art5rso6coa)hnr,agdaeabomnomiuosamtles1ssc–uai5nnla%drmdsiatenurtidenuripeempss,ieunarberssctouhhiralefealbaaciyeaoecgsrceesodo(ui6cmnh,tee9nfm5ot)-rs, ev. y U (76)andinmostgeothermalhabitats.Theirinvolvementinmajorgeochemicalcyclesisdiscussed Rb u. below. n n A CarbonCycle Archaeadominatethebiogenicproductionofmethane(CH )butarealsokeytotheoxidationof 4 thisimportanthydrocarbon.Archaealorganismsalsoplaysignificantrolesintheproductionand mineralizationoforganicmatter. Carbonassimilation. ManycultivatedrepresentativesoftheCrenarchaeota,Thaumarchaeota,and Supplemental Material Euryarchaeotaarecapableofautotrophicgrowth(SupplementalTable1;followtheSupplemen- tal Material linkfromtheAnnualReviewshomepageathttp://www.annualreviews.org),as theyassimilatecarbonfromoxidizedinorganiccompounds,i.e.,carbondioxide(CO )orbicar- 2 bonate (HCO −), reducing those substrates to form simple organic molecules (9) (Figure 2a). 3 Investigationofthegenomesequenceof“CandidatusCaldiarchaeumsubterraneum”(94)indicates · · 440 Offre Spang Schleper MI67CH21-Schleper ARI 6August2013 11:13 a Carbon cycle b Nitrogen cycle M eth2anoMgeentehs1iasno- CH4 Moxeidthaatinoen xationN2 N2Nitrifier dNe2nOitrificationNO genesis N fi Mineralization 3 Small 4 organics Acetogenesis CO2 OrgNanic NH3 Aoxmidmaotinoina NO2– Nitrite oxidation NO3– Oxic a n a e Freorbmice rnetsaptiiorant,ion Fixation Areesrpoibraiction ation Annamox nitrification Anoxic x e org OrgCanic N fi D ws. N N O NO NO – evienly. Anoxic Oxic 2 2 2 w.annualronal use o c Sulfur cycle ws om wor per Metal sulfide Abiotic H2S ownloaded frn 01/20/14. F OxidaOtioxnidation oxidSautlifounr Sreudlfuucrtion Sulfite reduction Microbiol. 2013.67:437-457. Dniversity of Arizona - Library o S2O532–ThiroseSudlufulacofttiaexotined aretidounction/ SSulfur oxidationOS42– DismSutualtfioantSe urlefdatucet iroend HuctSi2o–n SO32– ev. y U Rb u. Figure2 n n Schematicrepresentationoftheinvolvementofarchaeain(a)carbon,(b)nitrogen,and(c)sulfurcycles.Redarrowsindicatemetabolic A stepsfoundinarchaeaandbacteria;orangearrowsindicatemetabolicpathwayspresentexclusivelyinarchaea;andgrayarrowsindicate metabolismsknownonlyfrombacteria.Circlednumberscanbedefinedasfollows:1,hydrogenotrophicmethanogenesisisalithotrophic processresultingfromthereductionofCO2withH2aselectrondonor;2,formatotrophic,acetotrophic,andmethylotrophic methanogenesisareorganotrophicprocessessupportedbythedegradationofformate,acetate,andmethylatedcompounds, respectively;3,nitrifierdenitrificationisthoughttooccurunderlowoxygenconditions;4,N2Omightbeadirectsideproduct oftheammonia-oxidizingpathway;5,S2O32−isproducedinseveraldifferentwaysincludingabioticprocessesnotpresentedhere. thatmembersoftheAigarchaeotamightalsobeabletoassimilateinorganiccarbon.Threedif- ferentmetabolicpathwaysforautotrophiccarbonfixationhavebeencharacterizedincultivated archaealautotrophs,andthesewerereviewedrecently(9). ManyautotrophicmembersoftheArchaeagrowmixotrophically;i.e.,theycoassimilatesmall organic compounds under suitable conditions or switch between an autotrophic and a het- erotrophic lifestyle (61). Whereas Thaumarchaeota as described thus far depend on inorganic www.annualreviews.org • ArchaeainBiogeochemicalCycles 441 MI67CH21-Schleper ARI 6August2013 11:13 carbonforassimilation,somelineagesofEuryarchaeotaandCrenarchaeotaincludeseveralfacul- tative autotrophic organisms but also obligate heterotrophs, such as the representatives of the HalobacterialesandThermococcales(61). Stableisotope Thedeterminationofthegrowthmodeofmostarchaeaisbasedoninvitroexperiments,which probing(SIP): asubstratehighly mightnotreflectthelifestyleoftheseorganismsintheirnaturalhabitatsandlimitsthecurrent enrichedinastable knowledge of those organisms that have been successfully cultivated. However, some environ- isotope(e.g.,13C)is mentalstudiesusingnaturalradiocarboncontent,stableisotopeprobing(SIP)techniques,ormi- giventoan croautoradiographycombinedwithcatalyzedreporterdeposition–fluorescenceinsituhybridiza- environmentalsample tion(MICRO-CARD-FISH)havebeenperformedtorevealthelifestyleofparticulararchaeain todetectmetabolically activeorganismsinside natural populations and microcosms.For example, the natural radiocarbon content of archaeal acomplexmicrobial lipidsindicatesthatThaumarchaeotainoceanwaterspredominatelygrowautotrophically(50,99, consortium 140).Modeledestimatesofarchaealbiomassproductionindeepwatersrangefrom0.7to0.8Gt ANME: anaerobic C/year,suggestingthatThaumarchaeotamightcontribute∼1%oftheannualprimaryproduction org methanotroph intheocean(47,50)andcouldprovide,atleastinsomeinstances,mostofthereducedcarbonfor ws. Chemoorganotroph: heterotrophicmicroorganismsinoxygenminimumzones(45).Similarly,evidenceforautotrophic w.annualrevieonal use only. ooeelnrreggecaartgnnroyiiscnmscodoutomhrncapoetosrususnaendsdsas gSoinrfIoPaowrc(cte1hha0an5oe,fam1aitna4rl4teg)hai.nesItnossecocdemoaimnnetesprunahsbtytss,luo(r1rtefy1pap)cr.eeesDsseoeunfdatTilamthSiaevIunPemst,soai(.rfe1c.1th,h,aae6eo8qMt,ua1aCh2naG8tsi)t,baawetniedevnreDepssrtShoaAbovGliwednelidistnooietnogagsprooeeiswl,pmrhdooeicbtmreionrinocgotaransopmtppgshrruoiocsaauicnlphlgys, ws wer suggestedthateuryarchaealanaerobicmethanotroph(ANME)lineagesarealsoautotrophs(59). om or p d fr4. F Organic carbon mineralization. The catabolic degradation of organic substrates by e1 oad20/ chemoorganotrophsusuallyresultsintheproductionofCO2asthemainendproduct(Figure2a). wnl01/ However,theabsenceofexternalelectronacceptors(fermentativeconditions)oralimitationin on Do respiratorycapacityisassociatedwiththeexcretionofpartiallyoxidizedcompounds,e.g.,organic 457. brary acidsoralcohols,inadditiontoCO2.Numerousarchaealorganisms,includingaerobesandanaer- 7-Li obes,cangroworganotrophically(seebelowforadiscussionoforganotrophicmethanogensand 013.67:43Arizona - mwheitchhanbee-looxnigditzointhgearEcuhrayeaar)c.hTaehootaseaonrdgaCnriesnmarscthhaaetohtaav(SeubpeepnlecmuletinvtaatledTtahbulsefa1r).aAreceoxmtrepmreohpehnislievse, Microbiol. 2niversity of dcayaraecnrshccbhraeieapaeft,oaiolurencnpldaorsefisnstNehRneaetnafvoetahirvreaienlosocuaoesrfc6oht1rah.geeaOa,nKnaoonttrrhdoaeArpcbhRhaiMsaciesmoAotNefat,tahlGbienoeegloiaesagnmreocsshmmsaueeipogsepthaqot,uraAtelinsniogcgaegrcorcuohflwatuienvooacrttugael,adtintvhaoarettcrehpodarpoeehxavitlicrsaoeilormlnygoaa(nlp4ih,esu2iml9ric-s, ev. y U 37,67,93,94).Recentmetagenomicstudiessuggestthateuryarchaealphototrophicorganotrophs Rb u. (MarinegroupII)couldbeubiquitousintheglobalocean(34,51),butcurrentlythereisnoproof n An thatarchaealorganismspresentinmoderateenvironmentsplayamajorroleinorganiccarbon mineralization. Methanogenesis. Methane, a major greenhouse gas but also an important source of energy for humans, is the predominant hydrocarbon in Earth’s atmosphere. Methanogenic archaea are strict anaerobes that produce methane (CH ) as the major product of their energy- 4 conservingmetabolism(Figure2a).Allmethanogenicarchaeacharacterizedsofarbelongtothe Euryarchaeota (Supplemental Table 1) and are distributed among five taxonomic classes, i.e., Methanopyri,Methanococci,Methanobacteria,Methanomicrobia,andThermoplasmata(26,79,98). Severalmethanogenicpathwaysthatrelyonvarioussubstrateshavebeendescribed(Figure2a andSupplementalTable1):CO reductionwithhydrogen(hydrogenotrophicmethanogens)or 2 formate(formatotrophicmethanogens)aselectrondonors;methanolreductionwithhydrogen; fermentationofacetate(acetotrophicmethanogens);anddismutationofmethylatedcompounds · · 442 Offre Spang Schleper MI67CH21-Schleper ARI 6August2013 11:13 (methylotrophic methanogens) such as methanol, methylamines, dimethylsulfide (DMS), or methanethiol(33,79).WhereasmostcultivatedmethanogensreduceCO withhydrogen,only 2 members of Methanosarcinales have the ability to produce methane from the fermentation of Syntrophic acetate and the dismutation of methylated compounds. The recently discovered methanogenic partnerships: Thermoplasmata reduce methanol with hydrogen (26, 98) and might also use methylamines as electrontransfers methanogenic substrate (104). Currently, none of these methanogenic metabolisms have been betweentwo found in bacteria or eukaryotes. Although acetate fermentation is performed by only a few organismsenabling growthonotherwise cultivatedmethanogens,thisprocesscouldaccountforuptotwo-thirdsofthemethanereleased thermodynamically totheatmospherebyarchaealmethanogenesis;thereductionofCO accountsfortherestofthe 2 unfavorablereactions archaealcontributiontoatmosphericmethane,withminoramountsofmethaneproducedbythe dismutationofmethylcompounds(33). Methanogens have been isolated from various anoxic environments (20, 79) (e.g., rice pad- dies and peat bogs; freshwater, marine, and hypersaline sediments; hydrothermal vents; deep- org subsurfacehabitats;thegastrointestinaltractofvariousanimals)andareusuallyabundantwhere ws. electron acceptors such as NO3−, Fe3+, and SO42− are in short supply. Hydrogenotrophic evienly. methanogensandacetogenicbacteriahavesimilarrequirements,includinganoxicconditions,a w.annualronal use o psgoeeunrfreocsreimsoofecHdcau2trashseipglrehecftteerromennpdteioraanlltoyurra,etasnl(od2w,a6sHo5u,2r1cc3oe0no)c.feICnnOttera2rteaissoteninlsegcaltynr,domnaeattcahcaepnpHotoglreo(nwFiceigraurtrchehaan2eaa7);.hBiatuvcetamanlesatolhsbaoenebone- ws wer foundinoxicenvironments,i.e.,variousaeratedsoils(3,102)andtheoxygenatedwatercolumnof om or p anoligotrophiclake(40).Themethanogensinaeratedsoilsbecameactiveunderwetanoxiccon- d fr4. F ditions(3),andthoseinoxygenatedlakewaterswereattachedtophotoautotrophs,whichmight e1 oad20/ enable anaerobic growth and supply of methanogenic substrates (40). Several other processes, wnl01/ such as the microbial decomposition of methylphosphonate (55, 88), could be responsible for on Do methaneproductioninoxygenatedwaters(60),andfungi(74)andplants(15)arepossiblesources 457. brary of methane in aerated soils. The global significance of these alternative aerobic methanogenic 7-Li pathwaysremainstobeassessed. 013.67:43Arizona - forAarscihganeiafilcmanetthfraancotigoenneosfisthperondeutcaensnaubaoluetm1iGsstioonfsmoefthmaentehaenveertyoytehaer(a1tm11o,s1p3h0e)rean,dwiatchcosoumntes Microbiol. 2niversity of eiMbnsetecuitmanhudaastneeereosgfrpaocrsuloihndmidugachtrteeiaoswsenar7vrb4moy%iirnmsg(be7tay9hn)tad.ankMioisngetgehtnhupiascanraoatmgricneahnjtaoihcereaafobriscciohusdasueesoagpfreacacludtseraordteipontrnotoadorruifcsccteeircucmordeneessteohiadiarlencr(he5ab2(tl)8hy2aa)nti.ndstacaroycsatlilco(1cs2ko6eil)ds. ev. y U Rb u. n An Methanogenic syntrophies. Methanogenicarchaeaengageinvarioussyntrophicpartnerships (121)thatinvolvethetransferofelectronsfromafermentativeorganismtothemethanogenvia acarriermolecule,suchasH oracetate.Themethanogensusethecarriermoleculeaselectron 2 donorforenergyconservation,andthefermentativeorganismgainsenergyfromtheredoxre- actionthatproducestheelectroncarrieronlyifthemethanogens oxidizethecarriermolecule, keeping the carrier at a low concentration. Methanogens might also receive electrons directly (121)viaconductivepiliornanowires(112)oracrossconductiveiron-oxideminerals(58).Syn- trophicinteractionsenablemethanogenesiswhenmethanogenicsubstratesarelimiting,andtheir establishmentcanalsoleadtoincreasedmethaneproductionrates(58,120).Theglobalbiogeo- chemicalimpactofsyntrophicinteractionsinvolvingmethanogenicEuryarchaeotaisconsiderable as they enable the complete degradation of complex organic molecules to carbon dioxide and methaneinmethanogenichabitats(121).Acetotrophicmethanogenscanalsoproducehydrogen andsupportthehydrogen-dependentdechlorinationofxenobioticcompoundsbydehalorespiring www.annualreviews.org • ArchaeainBiogeochemicalCycles 443 MI67CH21-Schleper ARI 6August2013 11:13 microorganisms(46),furtherbroadeningthebiogeochemicalsignificanceofinteractionsinvolving methanogenicarchaea. AOM: anaerobic Methaneoxidation. MethanogenicarchaeaareamajorsourceofCH emissions,butsomeof oxidationofmethane 4 theirclosestrelativesinturnplayacriticalroleincontrollingtheseemissionsbyoxidizingCH 4 back to CO (Figure 2a). Methane-oxidizing archaea, also called methanotrophic archaea, are 2 strictanaerobesthatgainenergybycouplingtheoxidationofmethanetothereductionofsulfate (SO 2−) (129, 131). These organisms belong to the Euryarchaeota and all are representatives of 4 a single taxonomic class, the Methanomicrobia, along with various methanogenic archaea. The 16S rRNA gene sequences of the euryarchaeal ANMEs determine three sequence clusters, Supplemental Material namelyANME-1,ANME-2,andANME-3(SupplementalTable1),whicharedistantlyrelated to each other (16S sequence similarity of 75–92%) and do not form a monophyletic lineage (63).RepresentativesoftheANMElineageshavenotbeenobtainedinpureculture;therefore, org their taxonomy has not been formally established. These archaea often, but not always, form ws. microbial consortia with sulfate-reducing Deltaproteobacteria (reviewed in 63), which led to the evienly. suggestion that the sulfate-dependent anaerobic oxidation of methane (AOM) is a syntrophic w.annualronal use o pvthiraaobtcielAistNsy.MTofhEteh-2veesoeryrpgluaontwaitsiemvnesesrayglnoyntyreoieppldheiroefsofrt(mh12is9Am,O1e3Mta1b),cooaliunsmpdle,adhroetwcoeendvtiesrsb,irmleeaidlkatrtheorsroeyaursgcuhhlfesarttsuedtroyeqd(8uu9ec)stitsoihononw(tsheedee ws wer Sulfidogenesis,below).Nootherorganism,bacterialoreukaryotic,isknowntoperformasimilar om or p process. d fr4. F TheenvironmentaldistributionofANMEorganismshasbeenreviewedextensivelybyKnittel e1 oad20/ & Boetius (63), and a short account of their report is presented here. Methanotrophic archaea wnl01/ thriveinanoxicenvironmentswherebothmethaneandsulfatearepresent,whichoftenoccurs on Do in marine benthic systems. Accordingly, ANME organisms are widely distributed in methane 457. brary seep ecosystems as well as in marine sediments, where their habitat is restricted to the sulfate- 7-Li methanetransitionzone.Theabundanceofmethanotrophicarchaeaoftenmirrorstheratesof Microbiol. 2013.67:43niversity of Arizona - afa(agr<rrnreccea1shhaeh0taarw6eeeoraaacbltteihhecmlalrasmvenhecteh1amatb0ahl−ins1at0o3oan)cttbesreoe,olcoeltpcsxnhuhicedrdsmaepait−ntrhie3eoymc)npstaieahrcmdreyoiesncifinaoheosuelausonmnergdedoiidcixcamaiatcillnmelwsynetetadhttstthio,eivnasrweengrchesshoeesalor.uebefTemiwtpphansrhet,ossi,hh;cchehoai.ysbtessddi.pt,irrafooadftetttereshrnasoenwsrfaegmirAdepeOaseollloopyMvfw,uetl,fnehauarttern.sito,AdMhnsNesosemritMl(hsiuan,alpEldan-pqitec1oou-a,opitdfAixueenNirlndgassit,MziitaotihinnEneadg-sst ev. y U 2,andANME-3lineagesarenotidentical.ANME-1andANME-2aregloballydistributedand Rb u. present in similar environments, but one of these two groups usually dominates at a specific n An geographic location. ANME-3 organisms are essentially present at submarine mud volcanoes sites.Thephysiologicalandmetabolicbasesofthesedifferences,ifany,arenotclear. Iron(asferrihydrite)andmanganese(asbirnessite)arealternativeelectronacceptorssuitable forAOM,andthereisevidencethattheseprocessesmayoccurinmarinesedimentswhereSO 2−- 4 dependentAOMmayalsotakeplace(7).ThepotentialrateofSO 2−-drivenAOMwasreported 4 tobe 4and10 times as fastas birnessite-and ferrihydrite-dependentAOMinEel River Basin sediments,respectively,buttheglobalco-occurrenceoftheseprocesses,theirrelativecontribu- tion to in situ rates of AOM, and the identity of the microorganisms responsible for the iron- and manganese-dependent processes remain to be determined. AOM can also be coupled in a fundamentallydifferentbiochemicalpathwaytothedenitrificationfromnitrite(NO −),aprocess 2 occurringinfreshwaterhabitats(31,145)andperformedbyrecentlydiscoveredbacteriabelong- ingtotheNC10candidatedivision(30),butthereisnoindicationthatNO −-andSO 2−-driven 2 4 AOMcanoccurinthesameenvironment(see,e.g.,25). · · 444 Offre Spang Schleper MI67CH21-Schleper ARI 6August2013 11:13 AOMexertsastrongcontroloveroceanCH emissions,whichaccountforonly2%ofthe 4 CH releasedtotheatmosphere.GlobalestimatesoftherateofAOMinoceanicenvironments 4 suggestthatalargefraction(>50%)ofthegrossannualproductionofCH inmarinesystemsis 4 consumedbyanaerobicmethanotrophsbeforeCH isevenreleasedtooceanwaters(111).The 4 AOMinmarinesedimentshasbeenattributedtotheCH -oxidizingactivityofANMEarchaea, 4 butothermicroorganismsmaybeinvolved(7)andtheiridentityandcontributiontotheglobal CH budget need to be determined. There are, however, some uncertainties about the ability 4 ofANMEarchaeatorespondtoapotentialincreaseinoceanmethaneproduction,whichcould result from an accelerated melting of the massive reservoir of methane hydrates present in the seabed(13). Carbonateprecipitation. Anaerobicmethanotrophicarchaeapromotetheprecipitationofcar- bonates from the inorganic carbon dissolved in the sediment pore water by locally increasing org thealkalinityandinorganiccarbonconcentrationofthewater(16,134).Becausecarbonatesare ws. relativelystableinsediments,theirformationresultsinthelong-termstorageofcarboninthe evienly. lithosphere.Thecarbonofcarbonaterocksisre-emittedtotheatmosphereonlyslowlyoverge- ww.annualrsonal use o otimhloepglaioccntaglo-tfitmemremasrcicnaaleerbsCotHhnr4copyucrglohed(vu1oc0ltc)io.aAnninnsmaoetraoosbnsoilcycimbatyeetodhxwaidnitiezh-iontxegicdCtiozHnini4cgtpoalraCctheOase2uabbbduuutfcaftelisroonthbs,eywgtrhlaoincbhsafleiscrlrpiimanrgatttoiocf wer thelithospheresomeofthecarboncycledonashorttimescalebylivingorganisms. om or p d fr4. F oade20/1 NitrogenCycle ownln 01/ Archaeaarecentraltotheoxidationofammonia(NH3)tonitrite(NO2−)butarealsoinvolved Do inthefixationofdinitrogen(N )gasanddenitrificationprocess.Themineralizationoforganic 457. brary nitrogencompoundsbyarchaea2lorganotrophsisnotdiscussed. 7-Li 013.67:43Arizona - Neitihtreorgferonmfixiantoiorgna.nMiconsittroorggeannissmousr,ciensc,lusudcinhgatsheNgHre3atamndajnoritirtyatoef(aNrcOha3−ea),,aosrsifmroilmatennitirtoroggeenn- Microbiol. 2niversity of capthorreeonctianaetimsnssheionossgrpththoaseurtrgcpeaop.nnTlyitchiwnecuiotaohmtuminsplooytshuppnehrdobesdrioiu(cs1cpne7hi)st.eurroiTetga,hebaenlnseedenntoithtreregorsamgntehainciencaftooenmnodadpniocncuhoenaroidgnfsanmefrsiocosemsnntittltiihrafeeollglyfaoervnrgimaessaoreuibssrieodcregevspeo,oeirhnchoodfewemNnetvi2ceoiarnnl, Rev. by U processcallednitrogenfixation,whichconsistsofthereductionofN2toNH3(Figure2b).This u. process is performed naturally by a number of bacterial and archaeal microorganisms, but the n An industrialfixationofnitrogenthroughtheHaber-Boschprocessproducessimilarlylargequantities ofammoniausedasfertilizersinagriculture,whichiscurrentlystronglydisturbingthenitrogen cycle(19,41). The ability to fix N gas, or diazotrophy, is a widespread feature of methanogenic archaea 2 and is also present in anaerobic methane-oxidizing euryarchaea (Supplemental Table 1), but isexpressedonlyintheabsenceofothernitrogensourcesasforbacterialnitrogenfixers(17,22, 72). Diazotrophic methanogens belong to three major taxonomic classes, i.e., Methanobacteria, Methanococci,andMethanomicrobia(SupplementalTable1),andhavebeenisolatedfromvarious environments (17, 72, 87), suggesting a widespread occurrence in anoxic habitats (Figure 2b). DiazotrophicmethanotrophsbelongtotheANME-2lineage(22,101)andareknownonlyfrom methaneseepsediments.Cultivationexperimentshaveshownthatmethanotrophicdiazotrophs notonlyfixbutalsosharenitrogenwithbacterialpartnersinAOMconsortia(22).Theprevalence of in situ diazotrophic growth by methanogenic and methanotrophic archaea, however, is www.annualreviews.org • ArchaeainBiogeochemicalCycles 445 MI67CH21-Schleper ARI 6August2013 11:13 uncertain, and the importance of archaeal nitrogen fixation in providing reduced nitrogen for anaerobicmicrobialcommunitiesremainstobeassessed. Lithoautotrophic: Nitrification. Notonlyisammoniatakenupbymostorganismsandimmobilizedintheirbiomass, describesanorganism thatusesinorganic itisalsooxidizedtoNO3− inoxicenvironmentsviathenitrificationprocess(Figure2b),which compoundsasenergy consists of two steps, i.e., the oxidation of NH to NO − and its further conversion to NO −. 3 2 3 sourcesandfixes Each step is catalyzed by different guilds of microorganisms, namely the ammonia and nitrite carbonfrominorganic oxidizers,respectively.Untilrecently,itwasassumedthatonlylithotrophicbacteria(66)and,to compounds alimitedextent,heterotrophicmicroorganisms(125)areinvolvedinnitrification.Thediscovery AOA: thatlithoautotrophicarchaeathrivinginoxicandmoderatehabitatshavethecapacitytooxidize ammonia-oxidizing NH toNO −(64,133)wasunexpected,andtheirhighnumbersinmarineandfreshwaters,soils archaea 3 2 and surface sediments, and thermally heated environments suggest a prominent role in global nitrogencycling(73,118,139). org Ahandfulofammonia-oxidizingarchaea(AOA),allbelongingtoThaumarchaeota(Supplemen- ws. talTable1),havebeenobtainedinpurecultureorenrichments.Theystemfrommarineandconti- evienly. nentalhabitatsandareassignedtofourdifferentthaumarchaeallineages:group1.1a,group1.1aas- ww.annualrsonal use o shvoiaecvnieantreeendcs,eigns”rtol(y1us3ph21o).wi1sbna,btahlneadttotThgherAoawmOmoAn/oHunrWiea-aCoaxsGiadnIizIaiInl(tgfeorsrnoaailtritevhceaesunomturarecrvceiheoawfeN,osnHee“3C1(2aSn4ud)p.idpPalhetuymssiNeonliottgraoilcsTaolasspbthuleade1ier)as, wer andthereisevidencesuggestingthatureaisanimportantsubstrateforarchaealammoniaoxidation om or p inpolarwaters(1).Furthermore,analysisofthe“CandidatusNitrososphaeragargensis”genome d fr4. F indicatedthatcyanate(OCN−)mightbeusedassubstrateforarchaealammoniaoxidation(123) e1 oad20/ (SupplementalTable1).However,thaumarchaealrelativesofcultivatedAOAmightnotalways ownln 01/ growbyoxidizingNH3(91)ortheymightusedifferentelectronacceptors(54,128). Do TherelativecontributionofarchaealandbacterialammoniaoxidizerstotheNH oxidation 457. brary processisuncertain,andtheirrespectiveecologicalnicheshavebeendiscussed(107).3Cultivated Microbiol. 2013.67:437-niversity of Arizona - Li mlAifsboneiasOwwohc”nitAbess(i1utuiratui3bmourd2sermit)yuer,caspchi(,tstoAaeaAnrsOkcaOiceomcBeAnttni)ehcl,traaeariirlannz.setettoi.Arodo,ahOn2tbtaih1yoBrve.ene4a(psl8loo,mlo5osrww,uwMtee1cesd0hrttNo7fsailo)uneHs.rbrhtTa4ashin+tbnoorcigastAfeeetooeOttrrihonytAethhhocr,roecieitg.enhseJhahce.Ln,eosN2e2nlwd10tHdraaaamst3ttnetariMrcdoasosin,uhnnNwgacr(lhgeeH1fnpee-2s4srot7a+trerta)ttu.A(thepirHdOoaaHtntoAfiAsoow7,rmOn.ea5avniA)cgnedofhroona,ttursmhabtt“eccaemCconhroaomteir.gns(dpNKhpiiaeeonm-.tsngeo)vtsxifAgiteoibodnOrrloinezvBaweiefmnnotrahgy--rt ev. y U mostoftheammoniaoxidation(85).MicrocosmexperimentsindicatethatAOAcanalsoplaya Rb nu. majorroleinsoilNH3 oxidation(42,97),eveninfertilizedsoils(116,135),whichcouldbeex- An plainedbyanunevendistributionoffertilizerinthesoilporespace,definingamosaicofhigh-and low-ammonianiches.Otherstudieshavealsoindicatedthatarchaealammoniaoxidationinsoils mightbefueledbythemineralizationoforganicnitrogencompounds(75),suggestinginteractions withammonifyingmicroorganisms.Furthermore,AOAseemtoberesponsibleformostofthe ammoniaoxidationinsomeacidicsoils(42,81,143),andthefirstacidophilicammoniaoxidizer, thethaumarchaeon“CandidatusNitrosotaleadevanaterra,”wascultivatedonlyrecently(71). Ammoniaoxidationistherate-limitingstepofthenitrificationprocessandsupportstheox- idation of NO − to NO − (Figure 2b) by nitrite-oxidizing bacteria (NOB), but the nature of 2 3 theinteractionsbetweenAOAandNOBisstillunclear.Inthemarineenvironment,especiallyin oxygenminimumzones,AOAmightalsosupporttheanaerobicoxidationofNH + withNO − 4 2 (anammox)(Figure2b)bysupplyingnitriteandconsumingoxygen(69,141). Nitrificationhasaglobalimpactontheformofinorganicnitrogen(NH orNO −)available 3 3 inecosystems.TheassimilationofNO − hasahigherenergeticcostthanthatofNH because 3 3 · · 446 Offre Spang Schleper
Description: