ebook img

ARCH Models and Financial Applications PDF

229 Pages·1997·3.27 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview ARCH Models and Financial Applications

Springer Series in Statistics Advisors: P. Bickel, P. Diggle, S. Fienberg, K. Krickeberg, 1. Olkin, N. Wermuth, S. Zeger Springer Science+ Business Media, LLC Springer Series in Statistics Andersen/Borgan/Gill/Keiding: StatisticalModelsBasedonCountingProcesses. Berger: StatisticalDecisionTheoryandBayesianAnalysis,2ndedition. BolfarinelZacks:PredictionTheoryforFinitePopulations. Borg/Groenen:ModernMultidimensionalScaling:TheoryandApplications Brockwell/Davis:TimeSeries:TheoryandMethods,2ndedition. Chen/Shao/Ibrahim: MonteCarloMethodsinBayesianComputation. Efromovich:NonparametricCurveEstimation:Methods,Theory,andApplications. Fahrmeir/Tutz: MultivariateStatisticalModellingBasedonGeneralizedLinear Models. Farebrother:FittingLinearRelationships: AHistoryoftheCalculusofObservations 1750-1900. Federer: StatisticalDesignandAnalysisforIntercroppingExperiments,VolumeI: TwoCrops. Federer: StatisticalDesignandAnalysisforIntercroppingExperiments,VolumeII: ThreeorMoreCrops. Fienberg/Hoaglin/Kruskal/Tanur(Eds.): AStatisticalModel: FrederickMosteller's ContributionstoStatistics,ScienceandPublicPolicy. Fisher/Sen:TheCollectedWorksofWassilyHoeffding. Good: PermutationTests: APracticalGuidetoResamplingMethodsforTesting Hypotheses,2ndedition. Gourieroux:ARCHModelsandFinancialApplications. Grandell:AspectsofRiskTheory. Haberman: AdvancedStatistics,VolumeI: DescriptionofPopulations. Hall: TheBootstrapandEdgeworthExpansion. HardIe: SmoothingTechniques:WithImplementationinS. Hart:NonparametricSmoothingandLack-of-FitTests. Hartigan: BayesTheory. Hedayat/Sloane/Stujken: OrthogonalArrays:TheoryandApplications. Heyde:Quasi-LikelihoodanditsApplication: AGeneralApproachtoOptimal ParameterEstimation. Huet/Bouvier/Gruet/Jolivet: StatisticalToolsforNonlinearRegression: APractical GuidewithS-PLUSExamples. Kolen/Brennan:TestEquating: MethodsandPractices. Kotz/Johnson (Eds.): BreakthroughsinStatisticsVolume1. Kotz/Johnson (Eds.): BreakthroughsinStatisticsVolumeII. Kotz/Johnson (Eds.): BreakthroughsinStatisticsVolumeIII. Kuchler/Serensen: ExponentialFamiliesofStochasticProcesses. LeCam:AsymptoticMethodsinStatisticalDecisionTheory. LeCam/Yang: AsymptoticsinStatistics: SomeBasicConcepts. Longford:ModelsforUncertaintyinEducationalTesting. Miller,Jr.: SimultaneousStatisticalInference,2ndedition. Mosteller/Wallace: AppliedBayesianandClassicalInference:TheCaseofthe FederalistPapers. ParzenlTanabe/Kitagawa:SelectedPapersofHirotuguAkaike. Politis/Romano/Wolf:Subsampling. (conHnuedafterindex) Christian Gourieroux ARCH Models and Financial Applications With26Figures , Springer Christian Gourieroux Centre de Recherche en Economie et Statistique Laboratoire de Finance-Assurance Bâtiment Malakoff 2-Timbre 1320 15 Boulevard Gabriel Peri 92245 Malakoff Cedex, France Library of Congress Cataloging-in-Publieation Data Gourieroux, Christian, 1949- ARCH models and financial applieations/Christian Gourieroux. p. em. - (Springer series in statistics) Inc1udes bibliographical referenees and index. ISBN 978-1-4612-7314-1 ISBN 978-1-4612-1860-9 (eBook) DOI 10.1007/978-1-4612-1860-9 1. Finanee-Mathematical models. 2. Autoregression (Statistics) 1. Title. II. Series. HG176.5.G68 1997 332-de20 96-33588 Printed on acid-free paper. © 1997 Springer Science+Business Media New York Originally published by Springer-Verlag New York in 1997 Softcover reprint of the hardcover 1s t edition 1997 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form ofinformation storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. Production managed by Hal Henglein; manufacturing supervised by Jacqui Ashri. Camera-ready eopy prepared from the author's LaTeX files. 98765432 ISBN 978-1-4612-7314-1 SPIN 10756637 Contents 1 Introduction 1 1.1 TheDevelopmentofARCHModels 1 1.2 BookContent 4 2 Linearand NonlinearProcesses 5 2.1 StochasticProcesses . . . . 5 2.2 WeakandStrictStationarity 8 2.3 AFewExamples . . . . . . 12 2.4 Nonlinearities ... . . . . 22 2.4.1 PortmanteauStatistic 22 2.4.2 SomeImplicationsoftheWhiteNoise Hypothesis. 23 2.5 Exercises.......................... 26 3 UnivariateARCHModels 29 3.1 AHeteroscedasticModelofOrderOne 29 3.1.1 DescriptionoftheModel ... 29 3.1.2 Propertiesofthe InnovationProcesse 30 3.1.3 Propertiesofthe Y Process ... 32 3.1.4 DistributionoftheErrorProcess. 33 3.2 GeneralPropertiesofARCHProcesses . 34 3.2.1 VariousExtensions. . . . . . . . 34 3.2.2 StationarityofaGARCH(p,q) Process 37 3.2.3 Kurtosis................ 38 Contents VI 3.2.4 Yule-Walker Equations for the Square ofa GARCHProcess . 38 3.3 Exercises . 39 4 EstimationandTests 43 4.1 PseudoMaximumLikelihoodEstimation 43 4.1.1 Generalities . . . . . . . . . . . 43 4.1.2 Thei.i.d.case . . . . . . . . . . 44 4.1.3 RegressionModel withHeteroscedasticErrors 46 4.1.4 Regression ModelwithARCHErrors 49 4.1.5 Application toaGARCH Model . 51 4.1.6 StochasticVarianceModel . . 52 4.2 TwoStepEstimationProcedures . . . . . 53 4.2.1 DescriptionoftheProcedures . . 53 4.2.2 Comparison ofthe Estimation Methods under ConditionalNormality. . 54 4.2.3 EfficiencyLossAnalysis. 55 4.3 ForecastIntervals 56 4.4 HomoscedasticityTest . . . . . . 58 4.4.1 Regression ModelswithHeteroscedasticErrors 58 4.5 TheTestStatisticInterpretation .. . . . . . . . . . . 61 4.5.1 Application to Regression Models with ARCH or GARCHErrors 62 Appendix 4.1: Matrices Jand J . . . . . . . . . . . . . . . 63 Appendix 4.2: Derivatives ofthe Log-Likelihood Function and Information Matrix for a Regression Model with ARCHErrors 64 4.6 Exercises........................ 65 5 SomeApplicationsofUnivariateARCH Models 67 5.1 LeptokurticAspectsofFinancialSeriesandAggregation 67 5.1.1 TheNormality Assumption . . . . . . . . . . 67 5.1.2 TheChoiceofaTimeUnit. . . . . . . . . . . 69 5.2 ARCH Processes as an Approximation ofContinuous TimeProcesses. . . . . . . . . . . . . . 71 5.2.1 StochasticIntegrals 71 5.2.2 StochasticDifferentialEquations .. 73 5.2.3 SomeEquationsandTheirSolutions. 74 5.2.4 ContinuousandDiscreteTime. 76 5.2.5 Examples 78 5.2.6 SimulatedEstimationMethods 81 ·5.3 TheRandomWalkHypothesis. . . . . 83 5.3.1 DescriptionoftheHypothesis . 83 5.3.2 The Classical Test Procedure of the RandomWalkHypothesis . . . . . . 85 Contents vii 5.3.3 LimitationsofthePortmanteauTests ... 87 5.3.4 PortmanteauTestswithHeteroscedasticity . 88 5.4 ThresholdModels . . . . . . . . . . . . . . . 90 5.4.1 DefinitionandStationarityConditions. 90 5.4.2 HomoscedasticityTest . . . 92 5.4.3 QualitativeARCHModels . 93 5.4.4 NonparametricApproaches 95 5.5 IntegratedModels . 98 5.5.1 TheIGARCH(l,1)Model . 98 5.5.2 ThePersistenceEffect ... 99 5.5.3 WeakandStrongStationarity 100 5.5.4 Example 101 5.6 Exercises............... 101 6 MultivariateARCH Models 105 6.1 UnconstrainedModels . . . . . . . . 105 6.1.1 MultivariateGARCH Models 105 6.1.2 PositivityConstraints 107 6.1.3 StabilityConditions . . . 107 6.1.4 AnExample . . . . . . . 108 6.1.5 SpectralDecompositions. 109 6.2 ConstrainedModels . . . . . . . 111 6.2.1 DiagonalModels. . . . . 111 6.2.2 Models withConstantConditionalCorrelations 113 6.2.3 Models withRandomCoefficients . . . . . 114 6.2.4 ModelBasedonaSpectralDecomposition 116 6.2.5 FactorARCHModels . . . . . . . . . . 116 6.3 EstimationofHeteroscedasticDynamicModels . 117 6.3.1 PseudoMaximumLikelihoodEstimators 117 6.3.2 Asymptotic Properties of the Pseudo MaximumLikelihoodEstimator . . . . . 119 6.3.3 Model withConstantConditionalCorrelations 120 6.3.4 FactorModels . 121 7 EfficientPortfoliosand HedgingPortfolios 125 7.1 Determinationofan EfficientPortfolio . 125 7.1.1 SecuritiesandPortfolios . . . . 125 7.1.2 MeanVarianceCriterion .... 128 7.1.3 MeanVarianceEfficientPortfolios . 129 7.2 PropertiesoftheSetofEfficientPortfolios . 132 7.2.1 TheSetofEfficientPortfolios . . 132 7.2.2 Factors . 135 7.3 AsymmetricInformationandAggregation . 137 7.3.1 Incoherencyofthe Mean Variance Approach 137 7.3.2 Studyofthe BasicPortfolios . 138 viii Contents 7.3.3 Aggregation................... 139 7.4 HedgingPortfolios. . . . . . . . . . . . . . . . . . . . 140 7.4.1 Determination ofaPortfolio Mimicking aSeries ofInterest . . . . . . . . . . . . . . 141 7.4.2 AModelfortheCallSellerBehavior 142 7.4.3 TheFirmBehavior. . . . . . . . . 147 7.5 EmpiricalStudyofPerformanceMeasures . 148 7.5.1 PerformancesofaSetofAssets . . 148 7.5.2 Improvingthe Efficiency. . . . . . 149 7.5.3 Estimation ofthe Efficient Portfolio and its PerformanceintheStaticCase. . . . . . . . 149 Appendix 1: PresentationinTermsofUtility. . . . . . . . 152 Appendix 2: MomentsoftheTruncatedLog-NormalDistribution 155 Appendix3: AsymptoticPropertiesofthe Estimators 156 7.6 Exercises.......................... 157 8 FactorModels,Diversificationand Efficiency 161 8.1 FactorModels . . . . . . . . . . . . . . . 162 8.1.1 LinearFactorRepresentation ... 162 8.1.2 Representation with EndogenousFactors 163 8.1.3 StructureoftheConditionalMoments . . 165 8.1.4 Cofactors 167 8.1.5 Characterization with the Matrix Defining the EndogenousFactors . . . . . . . . 167 8.2 ArbitrageTheory . . . . . . . . . . . . . . 168 8.2.1 AbsenceofArbitrageOpportunities 168 8.2.2 DiversificationandPricingModel 169 8.2.3 DiversificationandRiskAversion 172 8.3 EfficiencyTestsandDiversification 172 8.3.1 Ex-AnteEfficiency. . . . . . . . 172 8.3.2 Ex-PostEfficiency . . . . . . . . 175 8.4 ConditionalandHistoricalPerformanceMeasures . 177 8.4.1 TheDynamicsofaModel withEndogenousFactors. 177 8.4.2 TestsforEx-AnteEfficiencyandPerformances 179 8.5 Exercises........................... 180 9 EquilibriumModels 183 9.1 CapitalAssetPricingModel 183 9.1.1 DescriptionoftheModel 183 9.1.2 MarketPortfolio. . . . . 184 9.1.3 TheCAPMasaFactorModel 185 9.1.4 SpectralDecompositionoftheMoments. 186 9.1.5 TimeDependentRiskAversion 187 9.2 TestoftheCAPM . . . . 187 9.2.1 SomeDifficulties 188 Contents ix 9.2.2 TestingProceduresinaStaticFramework . . . . 191 9.2.3 Test for Efficiency ofthe Market Portfolio in a DynamicFrameworkwithConstantBetas 196 9.2.4 Testsin theGeneralCase ..... 197 9.3 ExamplesofStructuralModels . . . . . . 199 9.3.1 AModelwithSpeculativeBubbles 199 9.3.2 TheConsumptionBasedCAPM . . 202 References 207 Index 227 1 Introduction 1.1 The Development ofARCH Models Timeseriesmodels havebeeninitiallyintroducedeitherfordescriptive purposes like prediction and seasonalcorrection orfor dynamic control. In the 1970s,the researchfocusedonaspecificclassoftimeseriesmodels,theso-calledautoregres sivemovingaverageprocesses (ARMA), whichwereveryeasyto implement. In thesemodels,thecurrentvalueoftheseriesofinterestiswrittenasalinearfunction ofitsownlaggedvaluesandcurrentandpastvaluesofsomenoiseprocess,which can be interpretedas innovations to the system. However, this approach has two majordrawbacks: 1) itisessentially alinearsetup, which automaticallyrestricts the type ofdynamics to be approximated; 2) it is generally applied without im posingaprioriconstraintsontheautoregressiveandmovingaverageparameters, whichisinadequateforstructuralinterpretations. AmongthefieldofapplicationswherestandardARMAfitispoorarefinancial and monetaryproblems.Thefinancial timeseries features various forms ofnon lineardynamics,thecrucialonebeingthestrongdependenceoftheinstantaneous variabilityoftheseriesonitsownpast.Moreover,financialtheoriesbasedoncon ceptslikeequilibriumorrationalbehavioroftheinvestorswouldnaturallysuggest including and testing some structural constraints on the parameters. In this con text, ARCH (Autoregressive Conditionally Heteroscedastic) models, introduced byEngle(1982),ariseas an appropriateframework for studyingtheseproblems. Currently,thereexistmorethanonehundredpapersandsomedozenPh.D.theses onthistopic, whichreflectstheimportanceofthis approachforstatisticaltheory, financeandempiricalwork.

Description:
From the reviews:RISKBOOK.COM"Gourieroux offers a nice balance of theory and application in this book on ARCH modeling in finance…The book is well written and has extensive references. Its focus on finance will appeal to financial engineers and financial risk managers."
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.