ebook img

Arbitrage free SABR Term structure modeling - Baruch MFE PDF

36 Pages·2015·0.37 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Arbitrage free SABR Term structure modeling - Baruch MFE

ArbitragefreeSABR Termstructuremodeling StochasticvolatilityHull-Whitemodel Interest Rate Volatility III. Working with SABR AndrewLesniewski BaruchCollegeandPosnaniaInc FirstBaruchVolatilityWorkshop NewYork June16-18,2015 A.Lesniewski InterestRateVolatility ArbitragefreeSABR Termstructuremodeling StochasticvolatilityHull-Whitemodel Outline 1 ArbitragefreeSABR 2 Termstructuremodeling 3 StochasticvolatilityHull-Whitemodel A.Lesniewski InterestRateVolatility ArbitragefreeSABR Termstructuremodeling StochasticvolatilityHull-Whitemodel Arbitrage free approach ThearbitragefreeapproachtoSABR[5]replacestheexplicitasymptotic expressionsdiscussedinPresentationIIwithanefficientnumericalsolutionof themodel. Theprobabilitydensityfunction: p(t,x,y;T,F,Σ)dFdΣ (1) =Prob(F <F(T)<F+dF,Σ<σ(T)<Σ+dΣ|F(t)=x,σ(t)=y) satisfiestheforwardKolmogorovequation: ∂ p= 1 ∂2 (cid:0)Σ2C(F)2p(cid:1)+ρα ∂2 (cid:0)Σ2C(F)p(cid:1)+ 1α2 ∂2 (cid:0)Σ2p(cid:1), (2) ∂T 2 ∂F2 ∂F∂Σ 2 ∂Σ2 withtheinitialcondition: p(t,x,y;t,F,Σ)=δ(F−x)δ(Σ−y). (3) A.Lesniewski InterestRateVolatility ArbitragefreeSABR Termstructuremodeling StochasticvolatilityHull-Whitemodel Arbitrage free approach Wehavethefollowingprobabilityconservationlaws: (cid:90) ∞ ∂2 (cid:0)Σ2C(F)2p(cid:1)dΣ= ∂ (cid:0)Σ2C(F)2p(cid:1)(cid:12)(cid:12)∞ 0 ∂F∂Σ ∂F (cid:12)0 =0, (4) (cid:90) ∞ ∂2 (cid:0)Σ2p(cid:1)dσ= ∂ (cid:0)Σ2p(cid:1)(cid:12)(cid:12)∞ 0 ∂Σ∂Σ ∂Σ (cid:12)0 =0, Introducenowthemoments: (cid:90) ∞ Q(k)(t,x,y;T,F)= Σkp(t,x,y;T,F,Σ)dΣ, (5) 0 fork =0,1,....Clearly,Q(0)(t,x,y;T,F)istheterminalprobabilityofF,given thestate(x,y)attimet. Inthefollowing,wewillsuppresstheexplicitdependenceon(t,x,y)ofQ(k). A.Lesniewski InterestRateVolatility ArbitragefreeSABR Termstructuremodeling StochasticvolatilityHull-Whitemodel Effective forward equation IntegratingtheforwardKolmogorovequationoverallΣ’sandusingthe probabilityconservationlaws(4)yieldsthefollowingequation: ∂ Q(0)= 1 ∂2 (cid:0)C(F)2Q(2)(cid:1). (6) ∂T 2 ∂F2 ThetimeevolutionofthemarginalPDFQ(0)dependsthusonthesecond momentQ(2). Now,eachofthemomentsQ(k)satisfiesthebackwardKolmogorovequation: ∂ 1 ∂2 ∂2 1 ∂2 Q(k)+ y2C(x)2 Q(k)+ραy Q(k)+ α2y2 Q(k)=0, ∂t 2 ∂x2 ∂x∂y 2 ∂y2 (7) Q(k)(T,x,y;T,F)=ykδ(F−x). Ratherthanfindinganexplicitsolutionto(7),weseektoexpressQ(2)intermsof Q(0),inordertoclosetheforwardequation(6). A.Lesniewski InterestRateVolatility ArbitragefreeSABR Termstructuremodeling StochasticvolatilityHull-Whitemodel Effective forward equation AdetailedanalysisusingasymptoticanalysisofthethebackwardKolmogorov equationforQ(0)andQ(2)showthat: Q(2)(T,F)=y2(1+2ρζ+ζ2)eραyΓ(T−t)Q(0)(T,F)(cid:0)1+O(ε3)(cid:1) =y2I(ζ)2eραyΓ(T−t)Q(0)(T,F)(cid:0)1+O(ε3)(cid:1), where α (cid:90) F du ζ= , y x C(u) (cid:113) I(ζ)= 1+2ρζ+ζ2, C(F)−C(x) Γ= . F−x ThemarginalPDFQ(0)(T,F)satisfiesthustheeffectiveforwardequation: ∂ Q(0)= 1 ∂2 (cid:0)y2I(ζ)2eραyΓ(T−t)C(F)2Q(0)(cid:1). (8) ∂T 2 ∂F2 TheapproximationaboveisaccuratethroughO(ε2),whichisthesameaccuracy astheoriginalSABRanalysis. A.Lesniewski InterestRateVolatility ArbitragefreeSABR Termstructuremodeling StochasticvolatilityHull-Whitemodel Option prices Topriceanoptionwethusproceedinthefollowingsteps. Wesolvenumericallytheeffectiveforwardequation: ∂ Q(0)= 1 ∂2 (cid:0)y2I(ζ)2eραyΓ(T−t)C(F)2Q(0)(cid:1), (9) ∂T 2 ∂F2 withtheinitialcondition: Q(0)(0,F)=δ(F−F ), atT =0. (10) 0 Weassumethat0<F <Fmax,whereFmaxisasuitablychosenmaximumvalue oftheforward(say10%). Weassumeabsorbing(Dirichlet)boundaryconditionssothatF(t)isa martingale: Q(0)=0, atF =0, Q(0)=0, atF =Fmax. A.Lesniewski InterestRateVolatility ArbitragefreeSABR Termstructuremodeling StochasticvolatilityHull-Whitemodel Numerical solution Thereducedproblemisonedimensional. (i) ItssolutionisimplementedusingthemomentpreservingCrank-Nicolson scheme. (ii) Itsruntimeisvirtuallyinstantaneous. Furthermore,themethod (i) guaranteesthatprobabilityisexactlypreserved,andthatF(t)isa martingale: (cid:90) ∞ p(T,F)dF =1, 0 (11) (cid:90) ∞ Fp(T,F)dF =F ; 0 0 (ii) themaximumprincipleforparabolicequationsguaranteesthat p(t,F)≥0, forallF. (12) A.Lesniewski InterestRateVolatility ArbitragefreeSABR Termstructuremodeling StochasticvolatilityHull-Whitemodel Numerical solution Optionpricesaregivenbytheintegrals: (cid:90) ∞ Pcall=N(0) (F−K)Q(0)(T,F)dF, K (13) (cid:90) K Pput=N(0) (K −F)Q(0)(T,F)dF, 0 whicharecalculatednumerically. ThePDFisindependentofthestrikeandcanbeusedforpricingoptionsofall strikes. Thenumericalsolutionisanarbitragefreemodel. A.Lesniewski InterestRateVolatility ArbitragefreeSABR Termstructuremodeling StochasticvolatilityHull-Whitemodel Boundary layer ArbitragefreeapproachyieldsnearlythesamevaluesastheexplicitSABR formulasσn(T,K,F0,σ0,α,β,ρ),exceptforlowstrikesandforwards. Usingasymptoticmethodstosolvetheeffectiveforwardequationleadstothe sameexplicitformulasforσnasintheoriginalanalysis,unlesstheforwardor strikeisnearzero. Explicitformulasforσndonotholdinaboundarylayeraroundzero. Boundarylayeroccurswhereasignificantfractionofthepathsgetabsorbedat0 beforeoptionexpiration. A.Lesniewski InterestRateVolatility

Description:
Term structure modeling Stochastic volatility Hull-White model Interest Rate Volatility III. Working with SABR Andrew Lesniewski Baruch College and Posnania Inc
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.