ArbitragefreeSABR Termstructuremodeling StochasticvolatilityHull-Whitemodel Interest Rate Volatility III. Working with SABR AndrewLesniewski BaruchCollegeandPosnaniaInc FirstBaruchVolatilityWorkshop NewYork June16-18,2015 A.Lesniewski InterestRateVolatility ArbitragefreeSABR Termstructuremodeling StochasticvolatilityHull-Whitemodel Outline 1 ArbitragefreeSABR 2 Termstructuremodeling 3 StochasticvolatilityHull-Whitemodel A.Lesniewski InterestRateVolatility ArbitragefreeSABR Termstructuremodeling StochasticvolatilityHull-Whitemodel Arbitrage free approach ThearbitragefreeapproachtoSABR[5]replacestheexplicitasymptotic expressionsdiscussedinPresentationIIwithanefficientnumericalsolutionof themodel. Theprobabilitydensityfunction: p(t,x,y;T,F,Σ)dFdΣ (1) =Prob(F <F(T)<F+dF,Σ<σ(T)<Σ+dΣ|F(t)=x,σ(t)=y) satisfiestheforwardKolmogorovequation: ∂ p= 1 ∂2 (cid:0)Σ2C(F)2p(cid:1)+ρα ∂2 (cid:0)Σ2C(F)p(cid:1)+ 1α2 ∂2 (cid:0)Σ2p(cid:1), (2) ∂T 2 ∂F2 ∂F∂Σ 2 ∂Σ2 withtheinitialcondition: p(t,x,y;t,F,Σ)=δ(F−x)δ(Σ−y). (3) A.Lesniewski InterestRateVolatility ArbitragefreeSABR Termstructuremodeling StochasticvolatilityHull-Whitemodel Arbitrage free approach Wehavethefollowingprobabilityconservationlaws: (cid:90) ∞ ∂2 (cid:0)Σ2C(F)2p(cid:1)dΣ= ∂ (cid:0)Σ2C(F)2p(cid:1)(cid:12)(cid:12)∞ 0 ∂F∂Σ ∂F (cid:12)0 =0, (4) (cid:90) ∞ ∂2 (cid:0)Σ2p(cid:1)dσ= ∂ (cid:0)Σ2p(cid:1)(cid:12)(cid:12)∞ 0 ∂Σ∂Σ ∂Σ (cid:12)0 =0, Introducenowthemoments: (cid:90) ∞ Q(k)(t,x,y;T,F)= Σkp(t,x,y;T,F,Σ)dΣ, (5) 0 fork =0,1,....Clearly,Q(0)(t,x,y;T,F)istheterminalprobabilityofF,given thestate(x,y)attimet. Inthefollowing,wewillsuppresstheexplicitdependenceon(t,x,y)ofQ(k). A.Lesniewski InterestRateVolatility ArbitragefreeSABR Termstructuremodeling StochasticvolatilityHull-Whitemodel Effective forward equation IntegratingtheforwardKolmogorovequationoverallΣ’sandusingthe probabilityconservationlaws(4)yieldsthefollowingequation: ∂ Q(0)= 1 ∂2 (cid:0)C(F)2Q(2)(cid:1). (6) ∂T 2 ∂F2 ThetimeevolutionofthemarginalPDFQ(0)dependsthusonthesecond momentQ(2). Now,eachofthemomentsQ(k)satisfiesthebackwardKolmogorovequation: ∂ 1 ∂2 ∂2 1 ∂2 Q(k)+ y2C(x)2 Q(k)+ραy Q(k)+ α2y2 Q(k)=0, ∂t 2 ∂x2 ∂x∂y 2 ∂y2 (7) Q(k)(T,x,y;T,F)=ykδ(F−x). Ratherthanfindinganexplicitsolutionto(7),weseektoexpressQ(2)intermsof Q(0),inordertoclosetheforwardequation(6). A.Lesniewski InterestRateVolatility ArbitragefreeSABR Termstructuremodeling StochasticvolatilityHull-Whitemodel Effective forward equation AdetailedanalysisusingasymptoticanalysisofthethebackwardKolmogorov equationforQ(0)andQ(2)showthat: Q(2)(T,F)=y2(1+2ρζ+ζ2)eραyΓ(T−t)Q(0)(T,F)(cid:0)1+O(ε3)(cid:1) =y2I(ζ)2eραyΓ(T−t)Q(0)(T,F)(cid:0)1+O(ε3)(cid:1), where α (cid:90) F du ζ= , y x C(u) (cid:113) I(ζ)= 1+2ρζ+ζ2, C(F)−C(x) Γ= . F−x ThemarginalPDFQ(0)(T,F)satisfiesthustheeffectiveforwardequation: ∂ Q(0)= 1 ∂2 (cid:0)y2I(ζ)2eραyΓ(T−t)C(F)2Q(0)(cid:1). (8) ∂T 2 ∂F2 TheapproximationaboveisaccuratethroughO(ε2),whichisthesameaccuracy astheoriginalSABRanalysis. A.Lesniewski InterestRateVolatility ArbitragefreeSABR Termstructuremodeling StochasticvolatilityHull-Whitemodel Option prices Topriceanoptionwethusproceedinthefollowingsteps. Wesolvenumericallytheeffectiveforwardequation: ∂ Q(0)= 1 ∂2 (cid:0)y2I(ζ)2eραyΓ(T−t)C(F)2Q(0)(cid:1), (9) ∂T 2 ∂F2 withtheinitialcondition: Q(0)(0,F)=δ(F−F ), atT =0. (10) 0 Weassumethat0<F <Fmax,whereFmaxisasuitablychosenmaximumvalue oftheforward(say10%). Weassumeabsorbing(Dirichlet)boundaryconditionssothatF(t)isa martingale: Q(0)=0, atF =0, Q(0)=0, atF =Fmax. A.Lesniewski InterestRateVolatility ArbitragefreeSABR Termstructuremodeling StochasticvolatilityHull-Whitemodel Numerical solution Thereducedproblemisonedimensional. (i) ItssolutionisimplementedusingthemomentpreservingCrank-Nicolson scheme. (ii) Itsruntimeisvirtuallyinstantaneous. Furthermore,themethod (i) guaranteesthatprobabilityisexactlypreserved,andthatF(t)isa martingale: (cid:90) ∞ p(T,F)dF =1, 0 (11) (cid:90) ∞ Fp(T,F)dF =F ; 0 0 (ii) themaximumprincipleforparabolicequationsguaranteesthat p(t,F)≥0, forallF. (12) A.Lesniewski InterestRateVolatility ArbitragefreeSABR Termstructuremodeling StochasticvolatilityHull-Whitemodel Numerical solution Optionpricesaregivenbytheintegrals: (cid:90) ∞ Pcall=N(0) (F−K)Q(0)(T,F)dF, K (13) (cid:90) K Pput=N(0) (K −F)Q(0)(T,F)dF, 0 whicharecalculatednumerically. ThePDFisindependentofthestrikeandcanbeusedforpricingoptionsofall strikes. Thenumericalsolutionisanarbitragefreemodel. A.Lesniewski InterestRateVolatility ArbitragefreeSABR Termstructuremodeling StochasticvolatilityHull-Whitemodel Boundary layer ArbitragefreeapproachyieldsnearlythesamevaluesastheexplicitSABR formulasσn(T,K,F0,σ0,α,β,ρ),exceptforlowstrikesandforwards. Usingasymptoticmethodstosolvetheeffectiveforwardequationleadstothe sameexplicitformulasforσnasintheoriginalanalysis,unlesstheforwardor strikeisnearzero. Explicitformulasforσndonotholdinaboundarylayeraroundzero. Boundarylayeroccurswhereasignificantfractionofthepathsgetabsorbedat0 beforeoptionexpiration. A.Lesniewski InterestRateVolatility
Description: