ebook img

AR, MA and ARMA models • The autoregressive process of order p or AR(p) PDF

37 Pages·2012·0.13 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview AR, MA and ARMA models • The autoregressive process of order p or AR(p)

AR, MA and ARMA models (cid:15) The autoregressive process of order p or AR(p) is de(cid:12)ned by the equation p X = (cid:30) X + ! (cid:0) t j t j t X j=1 2 where ! (cid:24) N(0; (cid:27) ) t (cid:15) (cid:30) = ((cid:30) ; (cid:30) ; : : : ; (cid:30) ) is the vector of model coe(cid:14)cients and 1 2 p p is a non-negative integer. (cid:15) The AR model establishes that a realization at time t is a linear combination of the p previous realization plus some noise term. (cid:15) For p = 0, X = ! and there is no autoregression term. t t 53 (cid:15) The lag operator is denoted by B and used to express lagged values of the process so BX = X , t t(cid:0)1 2 3 d B X = X , B X = X ,: : :, B X . t t(cid:0)2 t t(cid:0)3 t(cid:0)d (cid:15) If we de(cid:12)ne p j 2 p (cid:8)(B) = 1 (cid:0) (cid:30) B = 1 (cid:0) (cid:30) B (cid:0) (cid:30) B (cid:0) : : : (cid:0) (cid:30) B j 1 2 p X j=1 the AR(p) process is given by the equation (cid:8)(B)X = ! ; t = 1; : : : ; n. t t (cid:15) (cid:8)(B) is known as the characteristic polynomial of the process and its roots determine when the process is stationary or not. (cid:15) The moving average process of order q or MA(q) is 54 de(cid:12)ned as q X = ! + (cid:18) ! (cid:0) t t j t j X j=1 (cid:15) Under this model, the observed process depends on 0 previous ! s t (cid:15) MA(q) can de(cid:12)ne correlated noise structure in our data and goes beyond the traditional assumption where errors are iid. (cid:15) In lag operator notation, the MA(q) process is given by q j the equation X = (cid:2)(B)! where (cid:2)(B) = 1 + (cid:18) B . t t j=1 j P (cid:15) The general autoregressive moving average process of orders p and q or ARMA(p; q) combines both AR and MA models into a unique representation. 55 (cid:15) The ARMA process of orders p and q is de(cid:12)ned as p q X = (cid:30) X + (cid:18) ! + ! (cid:0) (cid:0) t j t j j t j t X X j=1 j=1 (cid:15) In lag operator notation, the ARMA(p; q) process is given by (cid:8)(B)X = (cid:2)(B)! ; t = 1; : : : ; n t t (cid:15) Lets focus on the AR process and its characteristic polynomial. (cid:15) The characteristic polynomial can be expressed as: p (cid:8)(B) = (1 (cid:0) (cid:11) B) i Y i=1 0 where the (cid:11) s are the reciprocal roots. (cid:15) If (cid:12) ; (cid:12) ; : : : ; (cid:12) are such that (cid:8)((cid:12) ) = 0 (roots of the 1 2 p i 56 polynomial) then (cid:12) = 1=(cid:11) ; (cid:12) = 1=(cid:11) ; : : : ; (cid:12) = 1=(cid:11) 1 1 2 2 p p (cid:15) Theorem: If X (cid:24) AR(p), X is a stationary process if and t t only if the modulus of all the roots of the characteristic polynomial are greater than one, i.e. if jj(cid:12) jj > 1 for all i i = 1; 2; : : : ; p or equivalently if jj(cid:11) jj < 1; i = 1; 2; : : : p. i 0 (cid:15) The (cid:11) s are also known as the poles of the AR process. i (cid:15) This theorem follows from the general linear process theory. (cid:15) Some of the poles or reciprocal roots can be real number and some can be complex numbers and we need to distinguish between the 2 cases. 57 (cid:15) For the complex case, we will use the representation (cid:11) = r exp((cid:6)! i); i = 1; : : : ; C i i i so C is the total number of conjugate pairs and 2C is the total number of complex poles. (cid:15) r is the modulus of (cid:11) and ! its frequency. i i i (cid:15) The real reciprocal roots are denoted as (cid:11) = r ; i = 1; 2; : : : R i i (cid:15) Example. Consider the AR(1) process X = (cid:30)X + ! . t t(cid:0)1 t (cid:15) In lag-operator notation this process is (1 (cid:0) (cid:30)B)X = ! t t and the characteristic polynomial is (cid:8)(B) = (1 (cid:0) (cid:30)B). (cid:15) If (cid:8)(B) = (1 (cid:0) (cid:30)B) = 0, the only characteristic root is 58 (cid:12) = 1=(cid:30) (assuming (cid:30) 6= 0). (cid:15) The AR(1) process is stationary if only if j(cid:30)j < 1 or (cid:0)1 < (cid:30) < 1. (cid:15) The case where (cid:30) = 1 corresponds to a Random Walk process with a zero drift, X = X + ! t t(cid:0)1 t (cid:15) This is a non-stationary explosive process. (cid:15) If we recursive apply the AR(1) equation, the Random Walk process can be expressed as X = ! + ! + ! + : : :. Then, t t t(cid:0)1 t(cid:0)2 1 2 V ar(X ) = (cid:27) = 1. t t=0 P (cid:15) Example. AR(2) process X = (cid:30) X + (cid:30) X + ! t 1 t(cid:0)1 2 t(cid:0)2 t (cid:15) The characteristic polynomial is now 59 2 (cid:8)(B) = (1 (cid:0) (cid:30) B (cid:0) (cid:30) B ) 1 2 (cid:15) The solutions to (cid:8)(B) = 0 are 2 2 (cid:0)(cid:30) + (cid:30) + 4(cid:30) (cid:0)(cid:30) (cid:0) (cid:30) + 4(cid:30) 1 q 1 2 1 q 1 2 (cid:12) = ; (cid:12) = 1 2 2(cid:30) 2(cid:30) 2 2 (cid:15) The reciprocal roots are 2 2 (cid:30) + (cid:30) + 4(cid:30) (cid:30) (cid:0) (cid:30) + 4(cid:30) 1 q 1 2 1 q 1 2 (cid:11) = ; (cid:11) = 1 2 2 2 (cid:15) The AR(2) is stationary if and only if jj(cid:11) jj < 1 and 1 jj(cid:11) jj < 1 2 (cid:15) These two conditions imply that jj(cid:11) (cid:11) jj = j(cid:30) j < 1 and 1 2 2 jj(cid:11) + (cid:11) jj = j(cid:30) j < 2 which means (cid:0)1 < (cid:30) < 1 and 1 2 1 2 (cid:0)2 < (cid:30) < 2. 1 60 2 (cid:15) For (cid:11) and (cid:11) real numbers, (cid:30) + 4(cid:30) (cid:21) 0 which implies 1 2 1 2 (cid:0)1 < (cid:11) (cid:20) (cid:11) < 1 and after some algebra (cid:30) + (cid:30) < 1; 2 1 1 2 (cid:30) (cid:0) (cid:30) < 1 2 1 2 2 (cid:30) (cid:15) In the complex case (cid:30) + 4(cid:30) < 0 or 1 > (cid:30) 1 2 (cid:0)4 2 (cid:15) If we combine all the inequalities we obtain a region bounded by the lines (cid:30) = 1 + (cid:30) ; (cid:30) = 1 (cid:0) (cid:30) ; (cid:30) = (cid:0)1. 2 1 2 1 2 (cid:15) This is the region where the AR(2) process is stationary. (cid:15) For an AR(p) where p (cid:21) 3, the region where the process is stationary is quite abstract. (cid:15) For the stationarity condition of the MA(q) process, we need to rely on the general linear process. (cid:15) A general linear process is a random sequence X of the t 61 form, 1 X = a ! (cid:0) t j t j X j=0 2 where ! is a white noise sequence with variance (cid:27) . t (cid:15) In lag operator notation, the general linear is given by the (cid:0)1 (cid:0)1 1 j expression X = (cid:8)(B) ! where (cid:8)(B) = a B . t t j=0 j P (cid:15) Note (cid:12)rstly that by the de(cid:12)nition of the linear process, E(X ) = 0. t (cid:15) Then, the covariance between X and X is t s 1 1 E[X X ] = a a E[X X ] t s j l t(cid:0)j s(cid:0)l X X j=0 l=0 62

Description:
The autoregressive process of order p or AR(p) is defined by the equation. Xt = p. ∑ j=1. φjXt−j + ωt where ωt ∼ N(0,σ2). • φ = (φ1,φ2,,φp) is the vector of
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.