Dynamic Learning is an online subscription solution that supports teachers and students with high quality content and unique tools. Dynamic Learning incorporates elements that all work together to give you the ultimate classroom and homework resource. Important notice: AQA only approve the Student Book and Student eTextbook. The other resources referenced here have not been entered into the AQA approval process. Teaching and Learning titles include interactive resources, lesson planning tools, self-marking tests and assessment. Teachers can: ●● Use the Lesson Builder to plan and deliver outstanding lessons ●● Share lessons and resources with students and colleagues ●● Track students’ progress with Tests and Assessments Teachers can also combine their own trusted resources and those from AQA A-level Physics Teaching & Learning Resources, which has a whole host of informative and interactive resources including: ●● Engaging animations and online presentations to provide students with clearer explanations ●● Interactive tests within each chapter that can be used in class or set as homework ●● Numerous stretch and extension materials to encourage higher-attaining students ●● Interactive flash cards, a table of the correct A-level language and a full glossary of words used in context AQA A-level Physics (Year 1 and Year 2) is available as a Whiteboard eTextbook which is an online interactive version of the printed textbook that enables teachers to: ●● Display interactive pages to their class ●● Add notes and highlight areas ●● Add double-page spreads into lesson plans Additionally the Student eTextbook of AQA A-level Physics (Year 1 and Year 2) is a downloadable version of the printed textbook that teachers can assign to students so they can: ●● Download and view on any device or browser ●● Add edit and synchronise notes across two devices ●● Access their personal copy on the move To find out more and sign up for free trials visit: www.hoddereducation.co.uk/dynamiclearning AQA A-level Physics Nick England Carol Davenport Jeremy Pollard Nicky Thomas Approval message from AQA The core content of this digital textbook has been approved by AQA for use with our qualification. This means that we have checked that it broadly covers the specification and that we are satisfied with the overall quality. We have also approved the printed version of this book. We do not however check or approve any links or any functionality. Full details of our approval process can be found on our website. We approve print and digital textbooks because we know how important it is for teachers and students to have the right resources to support their teaching and learning. However, the publisher is ultimately responsible for the editorial control and quality of this digital book. Please note that when teaching the AQA A-level Physics course, you must refer to AQA’s specification as your definitive source of information. While this digital book has been written to match the specification, it cannot provide complete coverage of every aspect of the course. A wide range of other useful resources can be found on the relevant subject pages of our website: www.aqa.org.uk. Every effort has been made to trace all copyright holders, but if any have been inadvertently overlooked, the Publishers will be pleased to make the necessary arrangements at the first opportunity. Although every effort has been made to ensure that website addresses are correct at time of going to press, Hodder Education cannot be held responsible for the content of any website mentioned in this book. It is sometimes possible to find a relocated web page by typing in the address of the home page for a website in the URL window of your browser. Hachette UK’s policy is to use papers that are natural, renewable and recyclable products and made from wood grown in well-managed forests and other controlled sources. The logging and manufacturing processes are expected to conform to the environmental regulations of the country of origin. Orders: please contact Bookpoint Ltd, 130 Park Drive, Milton Park, Abingdon, Oxon OX14 4SE. Telephone: +44 (0)1235 827827. Fax: +44 (0)1235 400401. Email [email protected] Lines are open from 9 a.m. to 5 p.m., Monday to Saturday, with a 24-hour message answering service. You can also order through our website: www.hoddereducation.co.uk © Nick England, Carol Davenport, Jeremy Pollard, Nicky Thomas 2019 First published in 2019 by Hodder Education, An Hachette UK Company Carmelite House 50 Victoria Embankment London EC4Y 0DZ www.hoddereducation.co.uk Impression number 10 9 8 7 6 5 4 3 2 1 Year 2023 2022 2021 2020 2019 All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or held within any information storage and retrieval system, without permission in writing from the publisher or under licence from the Copyright Licensing Agency Limited. Further details of such licences (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, www.cla.co.uk Cover photo © pixbox77 - stock.adobe.com Illustrations by Aptara Typeset in 11/13 pt ITC Berkeley Oldstyle by Aptara, Inc. Printed by Replika Press Pvt. Ltd. in Haryana, India A catalogue record for this title is available from the British Library. ISBN: 978 1 5104 6988 4 469884_FM_AQA_A-Level_Physics_i-vi.indd 2 17/04/19 8:54 AM Contents C o n t e Get the most from this book v n t s 1 Particles and nuclides 1 2 Fundamental particles 18 3 Electrons and energy levels 42 4 Particles of light 57 5 Waves 70 6 Combining waves 95 7 Introduction to mechanics 116 8 Motion and its measurement 133 9 Newton’s laws of motion 151 10 Work, energy and power 168 11 Momentum 183 12 Properties of materials 200 13 Current electricity 221 14 Electrical circuits 244 15 Circular motion 274 16 Simple harmonic motion 285 17 Gravitation 308 18 Thermal physics 329 19 Electric fields 358 20 Capacitance 381 21 Magnetic fields 403 22 Magnetic flux 420 23 Alternating currents and transformers 435 24 The evidence for the nucleus 449 25 Radioactive decay 468 26 Nuclear energy 485 469884_FM_AQA_A-Level_Physics_i-vi.indd 3 17/04/19 8:54 AM 27 Optional topic: Astrophysics 501 28 Maths in physics 546 29 Developing practical skills in physics 571 30 Preparing for written assessments 584 Index 593 Acknowledgements 600 Go online to www.hoddereducation.co.uk/AQAPhysics for answers. iv 469884_FM_AQA_A-Level_Physics_i-vi.indd 4 17/04/19 8:54 AM Get the most from this book G e t t h Welcome to the AQA A-level Physics Student’s Book. This book covers all e m content for the AQA A-level Physics specification. o s t The following features have been included to help you get the most from fr o this book. m t h Prior knowledge is b o This is a short list of topics that o k yswtoaiulrlt ihsnhegolp ua ltcdoh btaeeps ttfe ayrm.o Tuilrhia eur nqwduietehrsst tbioaennfods rine g. 7 ImP●●●●●n RaAAATTIuch OsvftrteoeeciRnn rcasric gntilKezoa gdce Nrro io ms qoqOw afuuoW hn aaamdpw nnLutetutasEiinatrrthuDytydn o=sihGhn .raanfEg osasc re bpocfofnueiett llahcycl. pt iss Fpiiisoozzls ierecec, ad aefln onls×erd apd edre xa eirar pttemmuecreonptnialdoeisinnc uag,u r fmlmeoadrrao esimdnxsi sae notmneaft wn2 poc ltkreoeg nt a.fosr r5o,q NmNu .e f o.rce 42T13 EbabccabMEAfaoS)))))))) x alp plTkrhCETTTTTTaoli erhhahhhhawxagYa nipeeeeeelhainOccn l dnt pwpdppauh gwUl aruuuueiluee nanhasR.lllssti llltgtggyihw tesaSooo hi l s mottehoffftEt ep nhfs yngggoamaLe e rrriatftlaetF o aaaele ta dsci vv pvun stno aOiiiherait tttf sersnayyy dteN t a ipam ahaiooonhss pl ennnPsg ac iolwet c oensvrRtttmrahhhhin.uid nzItleeeesoeleOaoge n?tm r ppp aRoua o aaayqnefntf o rrr ut nKtd2aaaa uhatso0 cccN esnpcw hhha mpteyOfhuuui oacetn etttWsylnldiiiulen –sssno a1t.o tttL.w ena ufiiirE dsssis5f no wDi tvlggnmreheirG cgtsefle heso osE aa s –rc aot 1tcasie.h ft elmp rWyae3s a nnt0ie:hshn g Nt isnacathinh eh zeivs r e toeo dh wafcafr e p0tsiatt oph .dhgt2rlehr . i5aqe ae m udg ldo a..arnntagt gi t.y. Scalar and vector quantities the pivot. ● cbNoaenlwatintnocunee’ds t fofoi rrmsctoe lvsae wa icn ot fao mns toartnaio iognbh sjte tlcaintt,ee ts ha ttah taa o tcb owjnehscettna w nnitlo ls rfpoeermecdea. ianc atts ,r eosr t or ●●Scalar and vector quantities AAdi rsvececactltiaoornr . qquuaannttiittyy iiss oonnee wwhhicichh h haass s sizizee o annldy. Amte masscpsa,el traearmt uqprueea rinastt 1uit9rye° ,Ci se’ ;no ientr emg ytah, kdaeti ssot annnolyc sehe, ansssp ese ietzode . s aaSnycd a‘ 1ltai9rm° qCeu. waWnetesi ttswiaeaysr itdnhsca’.ltu ‘droeo: m A resultant vector is the vector that results A vector quantity is one that has magnitude (size) and direction. Vector fsdruiosmmpl a (aecd.egdm.i nreegns tut)wl.toa notr fmorocree ovre cretosurslt iann at vector qamnu sda–n 1s.tp iBteiueedst, isinfe ceylmuoud l eiwk: erfoi tsreicm eth,i laaatcr c aqe culeaarrna ittsii totinreas, v,v eaelsll oitnhcgiet yya tba 3no0dth m d c isas–pn1l, a byceoe mum eaearnest u.t arVelekdlio nicngi ty about a speed; when you write that a car is travelling at 30 m s–1 due east, you have used a vector quantity, which is called velocity. In a similar way, the word displacement is used to describe a distance travelled in a particular direction. You have learnt to add or subtract simple vectors. In Figure 7.3 a two forces acting in the same direction add up to make a larger resultant force of 200 N, and in Figure 7.3 b two forces acting in opposite directions make a smaller resultant force of 300 N. Fmigovuirneg 7a.1t sFpoeremdu alrao 1u nradc ain cgo crnaresr. Fpiilglaurr ec h7o.2r dAs m.odern bridge with central 110000NN 800N 500N Engineers who build bridges, or who design Formula 1 cars, need a 116 patcfbohnoyrreond cd fs seotetishruzs,uei enga icdanrnt ni d kouad nnnna osl.dds hwI eocnarl ops etthtndehae sgnio tsecrdf u ocoimhnncft agcatipet ohoeptnerfet irs meao tnlyrf eerog cteniuuhnqg raeuwtnnehiiirri lnecsal g.dsnm. d maEe tfeno letemg axiicdneihbene aietslssritt. sa ay Bgub eooos fteou h mftt htdtahheete eeslsrai evgiwa enilscds at,eo ontafrod s p n cahaarytelucs uiurceslsae ,otd ef 1100(cid:31)00NN (cid:30) 200N 8500(cid:31)00NN (cid:30) 300N 117 Figure 7.3 (a) two forces acting in the same direction and (b) two forces acting in opposite directions. 469884_07_AQA_A-Level_Physics_116-132.indd 116 26/03/19 8:59 PM469884_07_AQA_A-Level_Physics_116-132.indd 117 26/03/19 8:59 PM Activities and Required practicals TTtTwarhhenheihirqgldeoelshus suhtleiteeirg e g esshpylhtdhpor ot yoa eupcoucrdtorttu a .rineqcrcass autpcoileech-rlsbiaal dtclcafisahots itqeanacedrpas uey ,lta eoecfscoruklt,seu iriaavlt nllrriisetdelo.yia euA rnsnsQ seinfAug’sl FigTuASEDIrtLCEoUNe D1mNAS S5E01LCI0TRC.AT P01 1a2V TtYth bhhAao8aOeR1e ed G)ct1e U appl1e boW 2iaRippgfcu)A E to ic heat ScbwhdnipxliuiMaErri Aoitiiplu )sdcEpn-pia)crnoupdt ix) acidtM heileGtraheoc w Lrapa carao we atuA tserrftuaaremallclweiFii( auneasp at ncFon(tlcam idlcgtislRgbisr uodsihilpo c mecgiliXtnnrta)ewegeiuep tbauia lahr la ?lpaa-uutIorl tesse uir)ytm ohdaelhdwh prasCrh( panma tl hp nssGrfddiactr aodeyoeyhneorhu i hd-e?ci iao:sEMosC ape cb)ytr e atI2r amcpih y is orrolwtnirohu tlo1enXaa eit-2c)g nta oaeeoattgaipeu cfc.nsoe-rrgti -ghli1cn3 andrsunrnttmeceeclri2pattrwma7ohih nmtot moineirgnlsa.aset2w.cuaucii entebtc uncrr o E insyt ka3erilmnseitm ei senldenwssi(ttdtitkx nltome(ts rheghirpepte -pcd yh naposucitas a rmcae o2r nh ruaoriled hgiet hor.ai,utcmcolarta2wtrahr sanstctle iiifydakyaal uitgi6ineetsc iee tenecs s muiapdisnmpsy(at.nhdcgukc edtm oc i lrsemeai yiUr ltteae nmp asontbdafeoe o.ot sroirl r b hscoui,tnesiepsrut nrf -nop ntetoeae i n atrgnh2herc itmcge e ftn dacta he2toedal ua rscshdee i i6 oaw e crt,ro abers vp.t n raoFft nga y c ae e igsa ui al yhonongerilror lnna neurattpantm a t h)rcphpaieag.Fnehrhbar rtrei eTg,gt eo1 g )mrep.ocwrh.o(ud ea1tu n imn rvPetrce3uph5 sytneu e)ot ic04c ,yClictpie snreo1c0t0eni3itdl es.0h0uow0ds21 Fs 0p0ru0 5i1t -iroe0bo0do0 agpeC n00 y rAfugrol 0ki ore.ristp0s euashectp sddd1eeou 0oi. rc u1amFrpsshc7ten iirahiatg o tooGmeia uevn‘ndlrmcrrybiae.usnoe1e bpr c cugrate1hh i nn.rP ng1coa dtPi4ahgcfr’ .s ig taiCc ca nuGer2itll rtnguodoceeeerusau n ieeC idgsrsdid alc .sBeie net arcc.ydg d3 h ttceveFhrea eotoii enmegruod scuadfnebut rireectssee 4e.t(dh rc er1rTs amasc.b 1r hnti)6hygnoge eaCr e ttdv sh 5lhimoe neau aatad li trlch. he6aym ber P7icture D. ATACeh TmsTaeKtbibuIE tiIeVbplnntd 1u(ee2tate×eeI na ed rT13t nP it1ntA ip.t sbitcaY02lkssc4a –T2o o0yc−siC)l1ei rHtγ1hen tpeuaeyνntt5a νs–eFhee rai r c aie–oJ–lco oo c r it–e c zo(rfm) g–l grXginiea eb n eucgenb uraarti rr aas eeslyeaddawiarenombTa,i lxtScrut ed on ppdsntiaoati seihItilot tmtime)fgeh nh1euP‘r o rt.hhe aoummp iu.cc areatirnta1i vueofss inaaohgadar u eea8soee imufotpymnyrr diree nhtt n emaatTbtc t rnia(a n novi hailiiusekmshoyceesnulnsritptu0e yainctiev t1tlx itooctnr(se eiimoocae al 0epewcsisAllfZge ec n lns ere.b (rn ebXlt(epr0eaattete str tiβgil(rihiiesol g iaartemcN1dostty n–ct iieirc(etn am6rhe ’sm) tom1einoαte .r0ihm ct 0mylu san1tnetny )niAνe unat‘e.ec tr o smmla)u5oenmn w t :tey0eld 0ga fi hprmeftove3γ trsiii’ ro0 ga1ti0ct- )a tn am2xee u1ihat 1bνoh2 yablnt yre2 uomc)fd 1de euele atooa y.du ee0det0r ainteyrfr-ea mstmr,. aen b ●s4 9 asb bx netmHu dosu8et9rhaiae1pimtatsf i’er1tmmeitmgae sartnsbaia.r yiani far5it ln eb ,t p ompertpt● ng(eo6uoageilyny aa cier4ao -t.tnref1 r rl h uraN n0kTeagtuTtbienpx.idn.ihss 0csDch iiirlu okisltuesla●8bsueeu●sersi)dc0m n eI8 lse.Ars iZ aecen teeis. imnUXf n0he sgpn fumo1tdelu prmig saergeclc ntquoe9corl eii onA hoettniaompua6reltt 6ontmtemtiwc oastlt-neras.nchtpeoua t0ot2nlead teoiiigde tT na hcrhndctlb r1 itom srnlatio ao1egefggrueten en0 e2Tra1t,F una f y 4mrateoc2 t do tstl2u8otdia tbsmh at.r6ohiwnog8m eah4crmn ohiwepqRi uefupld aoci bspo gtnoZs hpc abribnao aeba1te t lwlu m re eo2eea arccehn iiaotrr2→ansb ooxn8tn,tyatret1l td.en miaai,aaopt9eny a:m .Zc v a e1db l nad As hm 2lp ensun,u9ncteel ea(o2 1a,n 8apue tsagiasstl pi2 diD4u6h suo1riemen ecnhdaidRost4 lere.tmt-wdnroame h5 a dbieyc2cntcbmaclsne b ..nehacai1ewatpllm:e terdrtaowe1y0e+y.ii agrn.a6yb o ss w ta 0 boriasd4ybyhe0e 2sn .tfaiy i rHe6rs2fe i e ss()omirt1sca f2sx t8mohrca 8tldtv6ecet-18creohoedee6e aari7uRo =0 niotn ei la6xfubp=abtn u.aJ as 2ni2hmdle oaesse ec82 (d-fses( e)1r 8t6.o2t.1a:o irvcs8htvr81dvfa0ei6heee b06eyd.dA e 0 × lda ndi .e o tnra1ue ifa ofd0c ctdr−na ela1aieyr)5oTdf,a o2Jt avtirtet2)hTu8caa w.r2or 6tleml teiuonRt avadhul-e n ecs2peec + itflrc 2gmio+e+odoaa6orteypnos n cA, inls (4nane2r anytH ub anchgu)mdeeord.maf obantoL,bnn e srtoseriN-eaeiu rcotl2aem kra er etakqfvu2aet htifoiern ats2 laeeorat .rt i2cr d o8T2lktyen6h2hs,c e,++ia s y24 == 82826 926/03/19 7:22 PM v for checking your understanding as 26/03/19 7:22 PM469884_01_AQA_A-Level_Physics_001-017.indd 9 you progress through a topic. Tips 469884_01_AQA_A-Level_Physics_001-017.indd 8 These highlight important facts, common misconceptions and signpost you towards other relevant topics. 469884_FM_AQA_A-Level_Physics_i-vi.indd 5 17/04/19 8:54 AM Practice questions Yafoeccdecotxhovhofi l feadoautlqfhonimlie uclcwwe deuefie nnu ie sl tlttqgtanrolhyi tetu.od fhei h ieonT qneosisnesgrudttf s ,yih ey w toePlis loenvnyiitrgu tieaocsohohr ,clufm nu ytt aSr ti sdnt cihtc.uhgriehdenehne a tqg dtadcpl ureihsemtefveeerf esaeesurct.trn lol iai etTonodlninonpfh dt yusle ieot rsny- uegp r e s469884 _02_3AQ82 FUNADAMEN_TAL PAARTICLE-SLevel_P hysics4b_0 a)b1F )8 eGc-i I0ogenS)4ibnuf1a vt t3 .p)taT ihrteΣ)nshd ihteadT c Sehtt+ATedit rrCdares,o su ch2 2e at huslb b s t Pr)aio3lb)a e.weahi cie crle8e) 2e ngn)-px Io me-eFle t ll3nnxSna1 mettreecut fySs9 r2Faeci tta ee–n cpch otrbttoatasbr.ahma r)adttah1e9oahoamihaactmao+rrnl ibtansiemn ei) aecsneoo)rieeocmiWra.n)d iT) )t ty t )g )tnn edctwtras TihebSi goo h Shot hhpe peou n Sci hpteetehWnfsanta oin eeeaianorhbt i paltayat neitea taeef g roncp stwm,te-tr td lsg an hw tnts ld st ea iwatdaa td imeeqrarihaesoeh laobi ropct rnfotocca ictnitrntu oef etlitetsatft lohshhterstelu ecihf t she tmat rperihiducd emrpie s el iatqppstoryetpetpesnelaaroh eb ir hrkiheu rnoMptrqep ftneuartcgato woqQo-aodufs h eedettennn,rrud ioeecqgstft.uhiw ut opr rod treso tcec r aetfarsote.uiaHapaeaen rd ouate hoec lni nnrsxnnwuSoacrtr etiranulek lmoueetndh rcknlktabett ssncraialntoom riimiaph n em. t tn.steso cbn esisoo sntwi uiat sat n Stlcoteban tttlendtfrtnen we inrreryritlti hmhon aues a esuenMoaueu.bde sgoto reref e mct?strahhccg nec easte ehf e tpaaheh ttha t ts oeknuneel aucottuvaupnarainioe owthn r tctosnarabfrdraeepo lnt iesw t eoeedlnepeini nrlrrnoirf r usepe e ,p gnwto oioteongp be n oo iaxe iaaypcmftrffecnap.upB rnegfs eaoon rn tio xlan opasA tentyraartme earneodnwrar:abio padrar rm.s ncbto smtfts estmmmrtapyeio le lhgy h a noecste areaoarnohlecii pratrle.peenye tn tnvcnonae foyavoytissl oftl e fod tsetod onoesoOea ofai enab t nesp dfsrnrntncnsnRhot bh a heto:teh ao.aa.d.ts f alhraa M nreialn en essytibpiadlvae nif si n eedon tfhdonmpirebr dbperresoan oaduaedreo ora o tritmoqnsvfhm o.etlo neronnil a btuesnnye anan t neoreu.c athapsnote, a enh: (o.r o rrsmntdR a1 (y.kameonh 2 n )eaoteS ean(m a) l dpn2 snithd(ashsa oo)e4s,dtaor a(t .ssin)sFohe3d v+dnohe.i n1e)ar grdonoeeo d.ouwc s(cid:31)n nwornh.rieo ?nfeasap ng. rqwy2eig so ut.(cid:31) ate2wnoahy(1(orr2a ( 1( k F1)tBp2) se)a( )a.(y1 r(r1nT1t)(y)im2)hc(o(1)l(ena1e1)0rn )sn)e du inimategbrreaarcmti nSgtr.aen-(cid:31)g10enee(cid:31)ss 6c b) aa )D)gnD f iu)Uets)Wr i r)m nsa TpSdi airwPne t hrnSu ) iiKafougatmsT t egooteacSrad t− eK hβnn l brt KKe t)5ctual Fa→iieae −-toso+)ocnn −c+emh ne t) moS tTw nd wl→oeoKe q Eyk→e eetnet a sdeXShtp.fauun hihu nKaa+qhe.k)ccnXt t eeo o oanmiit πedra ure+haek−etμsc c)grots anvnrdp thK yr a 0s)Thi iiaha)→a os Fegμfb+tdan o s,i a tedor Moh aiqn+−hn c iyneaitSi se+−gnrbo iaμt Ngrsoeiianeux ptnee+ ktt ecoed no nπda μluecdn−niartr bpva a bar aeta cnmn,rhSde iaperivvt+eoμ−ie nne my:oltaesaleefadntμ uaidy aer.hdreenfc eld+sltagn e lanoeide aaot t2ne it taisn nxrn e imt ircihrciswptl do wva.nn niaifotopqtdesht e2cdtseμeiu e m hwit voinosnnex r:tludai2asro aeorma,ahsoeinm.d a.prt ht rn e anbn s idm sedylwifaNampSn e cptti vrtoi he xaaec com einirrdatoa noeuaaMnronsotpscehawlia yrgf i drm emfa oaetwsndtop ntltt r ta oucehaa ohooiy ianeit nsaniegco sent c deihmi sn fnsip,-ts r nr lnrceso flsn apttheiaeotc t ee ttiihh w.o s tnwntiethlnn.hordoiwe psnaac h h oe rIao-d ope otnrnteperlli-gtlninshinowiletetse n aeccs rssy.naythhofcte,ay sge bccra.ieo r eciaieEttee b mo aadeXufaytneuhysEdov launri.rinl xypluitrlc:pt cneteepneeexoc.tltr tepgr r rel la rrc yea ptaswmtieoarfo edaild enan hpenqoralnl ao tonfdiys atird opeeocougr nidnoAnifovtit n dcte. ananeithgeots,t eeei p,-lhn rh nceeoqhx feecd evwtaBawow lreetoincuo,siμali rsina n cn esheheitf,w ayhsata ecnsild bcxsdt iauyeytne axty ttcee t ,ie vpnh−seiwh,s ctri orl daro f Xsihpeicg oea1hevostnonat sotn ahrecuirnCs e.w ehir ss iim yo ta neadeeecn-qmsIp ii ..o sdto inlsdti th tuca seud itw iie henmuteemncth errcarseh anneutce.anc thanet iucsotypeasrotniAct chra tnaaosp rbfiylota i taKn nditei,ly dntgoioets r n lrp.iooπ b h ay −ete fenbteopa.o atn se e−chs khstqc e a n s .. amh iaepcoaee ersubtyr oteoirnnxi uaiel bot n cneic(s oot o nln2l(ets hi,ef ef1nowe frt).t(.oa st o(ve)r 1n,hen2r(vo es )at1 saa)gted ( )tld(e. i2 3 n )()e4((1(( )123())1F)))igupre 2A.22 AnothCer type of interacti3eo9(cid:31)n.B snoitseuq ecitcarP (3) Questions are colour-coded, to help target your pract06/0i3/19 c 9:25 PeM : Green – Basic questions that everyone should be able to answer without difficulty. Orange – Questions that are a regular feature of exams and that all competent candidates should be able to handle. Purple – More demanding questions which the best candidates should be able to do. Stretch and challenge – Questions for the most able candidates to test their full understanding and sometimes their ability to use ideas in a novel situation. Key terms and formulae These are highlighted in the text and definitions are given in the mlMTehaaarertnsghe itn shp terboos oevh ixiedmelepsp ayodordtuai tnpioti cnckao lno mcuetap tatensr.dia l 11 54 FpaptCbh)loia)ga ei +etFln+cuiFhoc5l)ite5egrirue gs ×eedcu l× ucCra m tBr 11aerer1tae09 eeitp0n tcl a . − –o11clOt1 t99narf99 uh9 KCiCedc.p .ele2s2sea .,rl t 0h0Xd mtdo(ahoe Yo dnsesfwo aw htud ttughiirhoc nst nseehwe ewvpai n es tfias thuigl rgwe l aedts0tc rlhnnwor.deeih3de e ao aecsso m emZr tlhqtfcde g r pauthaa ceehtroa arton gceirorkrn ghei uegfecett ad s e+d hllYfr ee1ad si,,gYwe c0 w pawaeslt−ihtd. rtp 8h) cohei Y hCcioof ,cr es 0f.m−eifh .qfris12s eebutlt0 .lmihrsi aed−nSee,8rs apns XeC ctahtg sih.arolet.eoZanh nrAnnrd e 3– gogg p1Z6Xfet o0 th0. Ph– hso C08feyiaf C ot aNt si−lrhvl i1 c Cenaae0u eg−acc−l1 o8cahh X arChtaaZeta rr oo spjggtof’nhose eit ein shno ipe tnf h gA e . re ZFO iigsu re 19A.1E9 BFH CJG DKI MTsBspouhAhteeT erHEVEele Scc====at r−rB4−4ircπydπO∞∫dr QεQεfiiVrnX040ergrlπ2d εQa 0acrth 2aad rdgries t+anQc eis r from the centre of an isolated charged Electrical potential for the more mathematical ii) aCtatlrcaucltaivtee tohre r efoprucles ibveet?ween the spheres in this case. Is the force Ninofitnei tteh adti stthaen lciem.its of the integration set the potential as zero at an physicists. ●●EFigluerec 1t9r.2i1c saholw ps ao stmealnl cthiaargeld isolated sphere. In theory, an isolated Adzeibfrfoseo rpeluonttceeen ebtlieaetlc,w twreihecin cp hao itpseo innintftiian alitn Tedhly ae f ppaoor itanewtn aatiyta .l pTabehsre o uflounrtitem peuollesaci ttVirvice= pc4hoπQtaεer0ngreti a ihnl e amltp aos vpuions igtno ti t dr f erforfiomnme ∞ aab tcsoho atlhrugatete p +eoQlein citst. r tNihceo p tweo ottehrnka ttd iiaofl nt. heTa ht e sphere should be in contact with nothing and infinitely far away from charge is −Q, then the potential is negative and the electric field does work anything else. In practice, in a laboratory, the best we can do is to suspend a in moving a positive charge closer to the point r. sphere by a fine, insulating thread and make sure the sphere is a few metres from everything else. The potential at a distance r from the centre of a sphere carrying a charge Q EXAMPLE is given by Electric field near a charged sphere V = 1000 V EExxaammpleps loef squestions and 5 ELECTRIC FIELDS F+iQgure 19.21isnuspuplaotrintingg t hsrrpehaedre NsTeecppxlaoheoshciecteneeest Vptrreo itet ifchf = n toaigahsflrrti4 amn aapiπtvlQifo εsut igteott0lhreala raynnteevi te oaciaigtwanhraaleaata,t ilriyvco vgp lenefeoorr. asoyitlese m s pnnti ootmeait agnaeilal yn,act trtihpivh ataleeoalr, ng mztteehehu,tre e ocso ntfa r op n atrsohl mtwbieane ruapt. y lpooIasont ffeb s opanietr ot is nivtgiaeemerln ga onitvalireatia tiarnlva retwei istg,o oa adwny t,teaih hvftlie heenpr .eece o Idhaztnsee a a nrrtashogtn ie eaa d l – FcsAS12vCath ik nrgtrttaeeohhyusrtn eercgDawge helpf.t oei d1hoegn 9r tlrtgade.oa2 t n pt s2ahCtht iersp asie hslo lnti oton1egw 0entssh 0htA i0aoa t0 wlom Vo hB fem ot 1aaw−0n1l0 .ds0p tVhh. eeTrnhe ef or oef lmreac dtriuics fi1e0l cdm , Fig–u50rA ec m19.22 –101B c0mV00/V0E1/V0100mC0 c–01m 50D cm vi caanldc uslaamtiopnles afenastwuerers f.ull workings 96 ptpaMfohnooraeyiimt nntchhttuhs ioo lanbaffrg ogfez oexeleedr lrss co ehest l,rpope ithwcochatetserelr i enhcpE.t oo afiIwiartneetll , hndt pa ht.rcineaaad clnf t oi bisbrc ymeed ,set uutrflhiesanaep etf eeosdnudr da r pasfian soac tgb eep e noooiutnfii nragt lth s ipceinna hfEnfieina nrbireittet ehea ld l yiyle so f rfanoiarvgur e arwadw wr aefayarfyoey .f rm rTfeornh omtcehme e Ft●●hi geVVafru t poio rs1omeb 0ia en1 c tyt9shmssc.e 2aat 3tosl oa pr1sn r2hh o l0aeota0nerwwe .dVs . a iatsnth daea l fwadanialslsystswa f nrepocro.em sT io th1ifve 05es00.e0 c Vam re –50 –40 –30 –20 –10–550000 r–/5c50m0000100 20 30 40 50 97 ●● EE iiss aco vnencetocrte, dso t om tuhset pcohtaenngtiea ld birye tchtieon. –1000 E–/1V0m00–01 equation E=−ddVr. On the right-hand Figure 19.23 AQA has provided five optional topics as part of the full A-level course so students can focus on their areas of interest: Astrophysics, Medical physics, Engineering physics, Turning points in physics, and Electronics. A chapter covering the first optional topic, Astrophysics, has been included in this book (Chapter 27). Dedicated chapters for developing your Maths and Practical skills and Preparing for your exam can be found at the back of this book. 469884_FM_AQA_A-Level_Physics_i-vi.indd 6 17/04/19 8:54 AM 1 Particles and nuclides PRIOR KNOWLEDGE ● Matter is made of atoms. Atoms are made up of a very small central nucleus containing particles called protons and neutrons, surrounded by orbiting electrons. The number of protons contained in the nucleus of an atom is called the proton or atomic number and the total number of protons and neutrons is called the nucleon or mass number. ● Protons are positively charged particles with a relative charge of +1; electrons are negatively charged particles with a relative charge of −1; neutrons are electrically neutral with a relative charge of zero. ● Atoms are electrically neutral overall, which means that they have the same number of protons and electrons. When atoms lose or gain electrons they become ions. An excess of electrons produces a negatively charged ion whereas a shortage of electrons produces a positively charged ion. ● The diameter of an atomic nucleus is of the order of 10 000 times smaller than the diameter of an atom, but contains the vast majority of the atomic mass. Protons and neutrons have a relative mass of 1, with electrons about 1800 times less massive. ● Elements are made up of atoms with the same proton number. Atoms can have the same number of protons but different numbers of neutrons: these are called isotopes. ● The relative atomic mass of an element compares the mass of atoms of the element with the carbon-12 isotope. TEST YOURSELF ON PRIOR KNOWLEDGE 1 Naturally occurring hydrogen has three isotopes: (‘normal’) hydrogen, deuterium and tritium. What three properties do atoms of each of these isotopes have in common? How do the isotopes differ? 2 What is the relative charge of a copper atom that has lost two electrons? 3 Chlorine has two naturally occurring isotopes that exist in an almost 75 : 25 abundance ratio. The average relative atomic mass of chlorine is 35.5. What are the relative atomic masses of these two isotopes? Find out their proton and nucleon numbers. 4 As at spring 2019, the element with the highest atomic number so far discovered is ognasson (Og, atomic number 118), first synthesised in 1 2002, of which only five or six atoms have been observed, each with a relative atomic mass of 294. Determine its: a) proton number b) neutron number c) electron number d) proton : electron mass ratio. 469884_01_AQA_A-Level_Physics_001-017.indd 1 17/04/19 8:57 AM On 8th October 2013 the Nobel Prize in Physics was awarded jointly to François Englert and Peter Higgs for the theoretical discovery of the particle known as the Higgs Boson. (This followed its experimental discovery by the Large Hadron Collider team at CERN on 4th July 2012). This discovery completes our current best model of what the Universe is built from, called the Standard Model, a model that started development nearly two and a half thousand years ago by a Greek philosopher called Democritus. Figure 1.1 Peter Higgs and the Higgs Boson Theory. It is said that Democritus observed that the sand on a beach was once part of the rocks of the cliffs and he questioned whether the sand could be cut into ever smaller pieces by a succession of sharper and smaller knives. It was Democritus who first coined the word ‘atom’, meaning the smallest indivisible piece that the sand could be cut up into. Nearly 2500 years later, JJ Thomson was able to extend Democritus’ thought experiment when he discovered the electron, splitting up atoms and discovering the first sub- atomic particle. In the early 1980s, researchers at IBM in Zurich produced a machine called an atomic force microscope that was able to image individual atoms. Figure 1.2 A more recent image taken Figure 1.2 shows a more recent image taken by a transmission electron by a transmission electron microscope showing individual gold atoms each microscope showing individual gold atoms. Each individual gold atom is separated from its neighbour by a separated from its neighbour by a distance of 2.3 nm (2.3 × 10−9 m). distance of 2.3 nm (2.3 x 10–9 m). ●● What are the building blocks of the Universe? What is the material of the Universe made of? Like so many things in physics, it depends on which model you are using to explain things. Physics is a series of evermore complex, layered models designed to explain how the Universe behaves as we see it now. Over the years, as our observations of the Universe – particularly on the sub-atomic and cosmological scales – S E have become more and more detailed, so the physical models have had to D LI adapt to the new observations and measurements. It is rare now for a theory C U to be developed as the result of a ‘thought’ experiment such as Democritus’. N D Models in physics N A S In science, and in physics in particular, we rely on models to explain how E L the Universe around us works. Models make complex, often invisible C I things or processes easier to visualise. Models take many forms. Some, T R like the models of atoms and nuclei used in this chapter, are visual models A P used as analogies of the real thing. The Rutherford-Bohr model used in the 1 next section is a good example of this type of model, where the nucleus is modelled as a small ball containing neutrons and protons, with electrons 2 whizzing round the outside. Atoms don’t actually ‘look’ like this, but it is a convenient, easy first model to use because it uses the analogy of everyday objects that we are very familiar with. Other types of model in physics are more mathematically based. A good example of this is the kinetic theory of gases, where simple physical rules expressed mathematically are applied to a model of gas molecules behaving as hard, bouncy elastic balls. These rules allow the model to predict the behaviour of real gases. 469884_01_AQA_A-Level_Physics_001-017.indd 2 17/04/19 8:57 AM