ebook img

AQA A level Mechanics sample chapters PDF

104 Pages·2017·15.71 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview AQA A level Mechanics sample chapters

Contents Getting the most from this book v 7 Circular motion 155 1 Kinematics 1 7.1 Introduction to circular motion 156 7.2 Circular motion with constant 1.1 The language of motion in one speed 160 dimension 2 7.3 The conical pendulum 162 1.2 The constant acceleration formulae 11 7.4 Banked tracks 167 1.3 Variable acceleration 16 8 Hooke’s law 175 2 Motion in more than one dimension 24 8.1 Strings and springs 176 2.1 Motion in more than one dimension 25 8.2 Using Hooke’s lllaaawww wwwYYYYYYYYYYYYYYYYYYYYYiiittthhh more 2.2 The equation of a path 32 than one sssppprrriiinnnggg ooorrr ssstttrrriiinnnggg 182 2.3 Path of a projectile 37 8.3 Work and eeennneeePPPPPPPPPPPPPPPPPPPPPrrrgggyyy 188 3 Forces and motion 44 8.4 VVVeeerrrtttiiicccaaalll mmmoootttiiiooonnn iiinnnvvvooolllvvviiinnnggg elastic fffooorrrccceeesss OOOOOOOOOOOOOOOOOOOOO 193 3.1 Forces and Newton’s laws of motion 45 3.2 Working in vectors 52 9 DDDiiimmmeeennnsssiiiooonnnaaalll aaannnaaalllyyysssiiisss 201 3.3 Forces in equilibrium 61 CCCCCCCCCCCCCCCCCCCCC 999...111 IIInnntttrrroooddduuuccctttiiiooonnn to dimensional 3.4 Finding resultant forces 69 aaannnaaalllyyysssiiisss 202 999...222 TTThhheee dddiiimmmeeennnsssiiiooonnnsss of further quantities 203 4 A model for friction 777888 TTTTTTTTTTTTTTTTTTTTT 999...333 OOOttthhheeerrr systems of units 204 4.1 A model for friction 777999 9.4 Dimensional consistency 206 4.2 Modelling with friction FFFFFFFFFFFFFFFFFFFFF 888000 9.5 Finding the form of the Practice Questions: Set 1 888999 relationship 207 AAAAAAAAAAAAAAAAAAAAA 9.6 The method of dimensions 209 5 WWWooorrrkkk,,, eeennneeerrrgggyyy aaannnddd pppooowwweeerrr 91 RRRRRRRRRRRRRRRRRRRRR Practice Questions: Set 2 214 5.1 Energy and mmmooommmeeennntttuuummm 92 5.2 Work and eeennneeerrrgggyyy 92 10 Moments of forces 217 DDDDDDDDDDDDDDDDDDDDD 5.3 GGGrrraaavvviiitttaaatttiiiooonnnaaalll pppooottteeennntttiiiaaalll eeennneeerrrgggyyy 100 10.1 Introduction to moments 218 5.4 Work aaannnddd kkkiiinnneeetttiiiccc eeennneeerrrgggyyy for 10.2 The moment of a force which tttwwwooo---dddiiimmmeeennnsssiiiooonnnaaalll mmmoootttiiiooonnn 104 acts at an angle 230 5.5 Power 108 10.3 Sliding and toppling .......................238 5.6 Work and energy with variable forces 111 11 Centre of mass 245 11.1 The centre of mass 246 6 Impulse and momentum 120 11.2 Centre of mass of two- and 6.1 Impulse 121 three-dimensional bodies 250 6.2 Conservation of momentum 125 11.3 Calculating volumes 261 6.3 Newton’s law of impact 131 11.4 Centres of mass 267 6.4 Impulse and momentum in 11.5 Centres of mass of plane regions 279 more than one dimension 139 6.5 Oblique impact of smooth elastic spheres 147 iii 9781510414426_FM.indd 3 12/09/17 10:34 PM 12 Circular motion 2 289 12.1 Circular motion with variable speed ................................290 Practice Questions: Set 3 308 Appendix: An introduction to radians 312 Extension material: Velocity and acceleration for motion in a Y circle 315 P Answers ..............................................317 Index ....................................................337 O C T F A R D iv 9781510414426_FM.indd 4 12/09/17 10:34 PM 3 Forces and motion Y P O C TTTTTTTTTTT FFFFFFFFFFF AAAAAAAAAAA RRRRRRRRRRR In the beginning (if (cid:31)(cid:31)(cid:31) TTThhhiiisss tttiiiggghhhtttrrrooopppeee wwwaaalllkkkeeerrr iiisss ssstttaaatttiiiooonnnaaarrryyy... TTThhheeerrreee aaarrreee aaa nnnuuummmbbbeeerrr ooofff fffooorrrccceeesss aaaccctttiiinnnggg ooonnn there was such a thing) ttthhheee wwwaaalllkkkeeerrr wwwhhhiiiccchhh cccaaannnccceeelll eeeaaaccchhh ooottthhheeerrr ooouuuttt,,, rrreeesssuuullltttiiinnnggg iiinnn nnnooo mmmoootttiiiooonnn... IIInnn ooorrrdddeeerrr GGGoooddd cccrrreeeaaattteeeddd NNNeeewwwtttooonnn’’’sss DDDDDDDDDDD fffooorrr ttthhhaaattt tttooo bbbeee pppooossssssiiibbbllleee,,, ttthhheee cccaaabbbllleee mmmuuusssttt mmmaaakkkeee sssmmmaaallllll aaannngggllleeesss tttooo ttthhheee hhhooorrriiizzzooonnntttaaalll lllaaawwwsss ooofff mmmoootttiiiooonnn tttooogggeeettthhheeerrr sssooo ttthhhaaattt ttthhheee vvveeerrrtttiiicccaaalll cccooommmpppooonnneeennntttsss ooofff ttthhheee ttteeennnsssiiiooonnn cccaaannn cccaaannnccceeelll ooouuuttt ttthhheee wwweeeiiiggghhhttt ooofff the walker. In that case, the tensions in the cable will be greater than the wwwiiittthhh ttthhheee nnneeeccceeessssssaaarrryyy walker’s weight. masses and forces. This is all; everything beyond this follows from the development of appropriate mathematical methods by means of deduction. Albert Einstein 44 9781510414426_CH03.indd 44 12/09/17 8:45 PM 1 Forces and Newton’s laws of 3 motion Modelling vocabulary C h Mechanics is about modelling the real world. In order to do this, suitable a p simplifying assumptions are often made so that mathematics can be applied to t e situations and problems. This process involves identifying factors that can be r 3 neglected without losing too much accuracy. Here are some commonly used F modelling terms which are used to describe such assumptions: o r c e (cid:29) negligible: small enough to ignore s (cid:29) inextensible: for a string with negligible stretch YYYYYY an (cid:29) light: for an object with negligible mass d m (cid:29) particle: an object with negligible dimensions PPPPPP o (cid:29) sssmmmoooooottthhh::: fffooorrr aaa sssuuurrrfffaaaccceee wwwiiittthhh nnneeegggllliiigggiiibbbllleee fffrrriiiccctttiiiooonnn ti o (cid:29) uniform: the same throughout. n OOOOOO Forces CCCCCC AAA fffooorrrccceee iiisss dddeeefififi nnneeeddd aaasss ttthhheee ppphhhyyysssiiicccaaalll qqquuuaaannntttiiitttyyy ttthhhaaattt cccaaauuussseeesss aaa ccchhhaaannngggeee iiinnn mmmoootttiiiooonnn... AAAsss iiittt dddeeepppeeennndddsss ooonnn mmmaaagggnnniiitttuuudddeee aaannnddd dddiiirrreeeccctttiiiooonnn,,, iiittt iiisss aaa vvveeeccctttooorrr qqquuuaaannntttiiitttyyy... Note FFFFFooooorrrrrccccceeeeesssss cccccaaaaannnnn ssssstttttaaaaarrrrrttttt mmmmmoooootttttiiiiiooooonnnnn,,,,, ssssstttttoooooppppp mmmmmoooootttttiiiiiooooonnnnn,,,,, ssssspppppeeeeeeeeeeddddd uuuuuppppp ooooorrrrr ssssslllllooooowwwww dddddooooowwwwwnnnnn ooooobbbbbjjjjjeeeeeccccctttttsssss,,,,, ooooorrrrr ccccchhhhhaaaaannnnngggggeeeee ttttthhhhheeeee dddddiiiiirrrrreeeeeccccctttttiiiiiooooonnnnn ooooofffff ttttthhhhheeeeeiiiiirrrrr mmmmmoooootttttTTTTTTTTTTTTTTTTTTTTiiiiiooooonnnnn..... IIIIInnnnn rrrrreeeeeaaaaalllll sssssiiiiitttttuuuuuaaaaatttttiiiiiooooonnnnnsssss,,,,, ssssseeeeevvvvveeeeerrrrraaaaalllll fffffooooorrrrrccccceeeeesssss uuuuusssssuuuuuaaaaallllllllllyyyyy aaaaacccccttttt ooooonnnnn g varies around the aaannn ooobbbjjjeeecccttt... TTThhheee sssuuummm ooofff ttthhheeessseee fffooorrrccceeesss,,, kkknnnooowwwnnn aaasss ttthhheee rrreeesssuuullltttaaannnttt fffooorrrccceee,,, dddeeettteeerrrmmmiiinnneeesss world, with 9.80 m s−2 wwwhhheeettthhheeerrr ooorrr nnnooottt ttthhheeeFFFFFFFFFFFFFFFFFFFFrrreee iiisss aaa ccchhhaaannngggeee ooofff mmmoootttiiiooonnn... being a typical value. Singapore, at 9.766, TTThhheeerrreee aaarrreee ssseeevvveeerrraaalll tttyyypppeeesss ooofff fffooorrrccceee ttthhhaaattt yyyooouuu ooofffttteeennn uuussseee... has one of the lowest AAAAAAAAAAAAAAAAAAAA values, and Helsinki, with 9.825, has one of TTThhheee fffooorrrccceee ooofff gggrrraaavvviiitttyyy RRRRRRRRRRRRRRRRRRRR the highest. You need EEEvvveeerrryyy ooobbbjjjeeecccttt ooonnn ooorrr nnneeeaaarrr ttthhheee EEEaaarrrttthhh’’’sss sssuuurrrfffaaaccceee iiisss pppuuulllllleeeddd vvveeerrrtttiiicccaaallllllyyy dddooowwwnnnwwwaaarrrdddsss bbbyyy ttthhheee to look carefully at the level of accuracy to fffooorrrccceee ooofff gggrrraaavvviiitttyyy... TTThhheee sssiiizzzeee ooofff ttthhheee fffooorrrccceee ooonnn aaannn ooobbbjjjeeecccttt ooofff mmmaaassssss M kg is Mg newtons DDDDDDDDDDDDDDDDDDDD which g iiisss gggiiivvveeennn iiinnn aaannnyyy wwwhhheeerrreee ggggggg iiiiisssss aaaaa cccccooooonnnnnssssstttttaaaaannnnnttttt wwwwwhhhhhooooossssseeeee vvvvvaaaaallllluuuuueeeee iiiiisssss aaaaabbbbbooooouuuuuttttt 99999.....88888 mmmmm sssss−2. The force of gravity is also ppprrrooobbbllleeemmm... YYYooouuurrr fififi nnnaaalll kkknnnooowwwnnn aaasss ttthhheee weight of the object. aaannnssswwweeerrr ssshhhooouuulllddd aaalllwwwaaayyysss rrreeeflflfl eeecccttt ttthhheee aaaccccccuuurrraaacccyyy ooofff the given information. Tension and thrust When a string is pulled, as in Figure 3.1, it exerts a tension force opposite to the pull. The tension acts along the string and is the same throughout the string. A rigid rod can exert a tension force in a similar way to a string when it is used to support or pull an object. It can also exert a thrust force when it is in compression, as in Figure 3.2. The thrust acts along the rod and is the same throughout the rod. The tension on either side of a smooth pulley is the same, as shown in Figure 3.3. 45 9781510414426_CH03.indd 45 12/09/17 8:45 PM Forces and Newton’s laws of motion T (tension pulling W (weight of block) down on ceiling) T (thrust pushing up on block) T T (tension pulling up on object) T (thrust pushing down on floor) T mg (weight of object) R (reaction from floor) Figure 3.1 Figure 3.2 Figure 3.3 Normal reaction AAA bbbooooookkk rrreeessstttiiinnnggg ooonnn aaa tttaaabbbllleee iiisss sssuuubbbjjjeeecccttteeeddd tttooo tttwwwooo fffooorrrccceeesss,,, iiitttsss wwwYYYYYYYYYYYYYYeeeiiiggghhhttt aaannnddd ttthhheee normal reaction ooofff ttthhheee tttaaabbbllleee... IIIttt iiisss cccaaalllllleeeddd nnnooorrrmmmaaalll bbbeeecccaaauuussseee iiitttsss llliiinnneee ooofff aaaccctttiiiooonnn iiisss nnnooorrrmmmaaalll (((aaattt rrriiiggghhhttt aaannngggllleeesss))) tttooo ttthhheee sssuuurrrfffaaaccceee ooofff ttthhheee tttaaabbbllleee... SSSiiinnnccceee ttthhheee bbbooooookkk iiisss iiinnn eeeqqquuuiiillliiibbbrrriiiuuummm,,, PPPPPPPPPPPPPP ttthhheee nnnooorrrmmmaaalll rrreeeaaaccctttiiiooonnn iiisss eeeqqquuuaaalll aaannnddd oooppppppooosssiiittteee tttooo ttthhheee wwweeeiiiggghhhttt ooofff ttthhheee bbbooooookkk;;; iiittt iiisss aaa Note positive force. OOOOOOOOOOOOOO In Figure 3.4, the R (((nnnooorrrmmmaaalll rrreeeaaaccctttiiiooonnn))) normal reaction is TTThhheee nnnooorrrmmmaaalll rrreeeaaaccctttiiiooonnn vertical but this is not fffooorrrccceee iiisss aaalllsssooo ooofffttteeennn CCCCCCCCCCCCCC always the case. For cccaaalllllleeeddd ttthhheee nnnooorrrmmmaaalll example, the normal contact force. reaction on an object on a slope is perpendicular mmmggg (((wwweeeiiiggghhhttt))) TTTTTTTTTTT to the slope. Figure 3.4 IIIfff ttthhheee bbbooooookkk iiisss aaabbbFFFFFFFFFFFooouuuttt tttooo lllooossseee cccooonnntttaaacccttt wwwiiittthhh ttthhheee tttaaabbbllleee (((wwwhhhiiiccchhh mmmiiiggghhhttt hhhaaappppppeeennn,,, fffooorrr iiinnnssstttaaannnccceee,,, iiifff ttthhheee tttaaabbbllleee iiisss aaacccccceeellleeerrraaatttiiinnnggg rrraaapppiiidddlllyyy dddooowwwnnnwwwaaarrrdddsss))),,, ttthhheee nnnooorrrmmmaaalll fffooorrrccceee bbbeeecccooommmeeesss zzzeeerrrooo... AAAAAAAAAAA FFFrrriiiccctttiiiooonnnaaalll fffooorrrccceee RRRRRRRRRRR IIInnn ttthhhiiisss dddiiiaaagggrrraaammm,,, ttthhheee bbbooooookkk ooonnn ttthhheee tttaaabbbllleee iiisss bbbeeeiiinnnggg pppuuussshhheeeddd bbbyyy aaa fffooorrrccceee P parallel to the sssuuurrrfffaaaccceee... TTThhheee bbbooooookkk rrreeemmmaaaiiinnnsss aaattt rrreeesssttt bbbeeecccaaauuussseee P is balanced by a frictional force, F, DDDDDDDDDDD iiinnn ttthhheee oooppppppooosssiiittteee dddiiirrreeeccctttiiiooonnn tttooo P. The magnitude of the frictional force is equal to ttthhheee pppuuussshhhiiinnnggg fffooorrrccceee P = F R (normal reaction) The frictional force P is also sometimes F (friction) called frictional contact force. mg (weight) Figure 3.5 If P is increased and the book starts to move, F is still present but now P > F. Friction always acts in the opposite direction to the motion. Friction may prevent the motion of an object or slow it down if it is moving. 46 9781510414426_CH03.indd 46 12/09/17 8:45 PM Driving force 3 In problems about moving objects such as cars, all the forces acting along the line of motion can usually be reduced to two or three: the driving force, the resistance to motion and, possibly, a braking force. C h Resistance Driving force a p t e Braking force r 3 Figure 3.6 F o r Example 3.1 c Figure 3.7 shows a block A of mass 10 kg connected to a light scale pan by a e s llliiiggghhhttt iiinnneeexxxttteeennnsssiiibbbllleee ssstttrrriiinnnggg ttthhhaaattt pppaaasssssseeesss ooovvveeerrr aaa llliiiggghhhttt sssmmmoooooottthhh pppuuulllllleeeyyy... TTThhheee ssscccaaallleee pppaaannn a YYYYYYYYYYY n hhhooollldddsss bbbllloooccckkk BBB,,, aaalllsssooo ooofff mmmaaassssss 111000 kkkggg... TTThhheee sssyyysssttteeemmm iiisss iiinnn eeeqqquuuiiillliiibbbrrriiiuuummm... d m (((iii))) OOOnnn ssseeepppaaarrraaattteee dddiiiaaagggrrraaammmsss,,, ssshhhooowww aaallllll ttthhheee fffooorrrccceeesss aaaccctttiiinnnggg ooonnn eeeaaaccchhh ooofff ttthhheee mmmaaasssssseeesss,,, PPPPPPPPPPP o t the scale pan and the pulley. i o n (((iiiiii))) FFFiiinnnddd ttthhheee vvvaaallluuueee ooofff ttthhheee ttteeennnsssiiiooonnn iiinnn ttthhheee ssstttrrriiinnnggg... OOOOOOOOOOO A (((iiiiiiiii))) FFFiiinnnddd ttthhheee ttteeennnsssiiiooonnn iiinnn ttthhheee rrroooddd hhhooollldddiiinnnggg ttthhheee pppuuulllllleeeyyy... B (((iiivvv))) FFFiiinnnddd ttthhheee nnnooorrrmmmaaalll rrreeeaaaccctttiiiooonnn ooofff CCCCCCCCCCCBBB ooonnn ttthhheee ssscccaaallleee pppaaannn... Figure 3.7 Solution TTTTTTTTTTTTTTTTTTTT (i) NNNNNooooorrrrrmmmmmaaaaalllll rrrrreeeeeaaaaaccccctttttiiiiiooooonnnnn Tension in rod TTTeeennnsssiiiooonnn iiinnn ttthhheee ssstttrrriiinnnggg Tension in the string ooofff ssscccaaallleee pppaaannn ooonnn BBB holding pulley FFFFFFFFFFFFFFFFFFFF TTT R T T1 AAAAAAAAAAAAAAAAAAAA AAA B RRRRRRRRRRRRRRRRRRRR R 10g 10g T T DDDDDDDDDDDDDDDDDDDD WWWeeeiiiggghhhttt ooofff AAA wwwrrriiitttttteeennn aaasss Normal reaction Tension in the Weight of B 10g and acting of B on scale pan string vertically downwards. Figure 3.8 (ii) Block A is in equilibrium: ⇒ T = 10 g = 98 N. (iii) The pulley is in equilibrium: ⇒ T = 2T = 196 N. 1 (iv) Block B is in equilibrium: ⇒ R = 10 g = 98 N. Newton’s laws of motion 1 Every object continues in a state of rest or uniform motion in a straight line unless it is acted on by a resultant external force. 2 The acceleration of an object is proportional to, and in the same direction as, F is the resultant force. the resultant of the forces acting on the object. m is the mass of the object. F = ma a is the acceleration. 47 9781510414426_CH03.indd 47 12/09/17 8:45 PM Forces and Newton’s laws of motion Notice that this is a vector equation, since both the magnitudes and directions Historical of the resultant force and the acceleration are involved. If the motion is along a note straight line it is often written in scalar form as F = ma. Isaac Newton was 3 When one object exerts a force on another there is always a reaction, which born in Lincolnshire is equal and opposite in direction to the acting force. in 1642. He was not an outstanding scholar either as a schoolboy Equation of motion or as a university student, yet later in life The equation resulting from Newton’s second law is often described as an he made remarkable contributions in equation of motion, as in the following examples. dynamics, optics, astronomy, chemistry, Example 3.2 music theory and YYYYYYYY theology. He became AAAnnn eeemmmppptttyyy bbbooottttttllleee ooofff mmmaaassssss 000...555 kkkggg iiisss rrreeellleeeaaassseeeddd fffrrrooommm aaa sssuuubbbmmmaaarrriiinnneee aaannnddd rrriiissseeesss wwwiiittthhh aaannn Member of Parliament acceleration of 0.75 m s−2... TTThhheee wwwaaattteeerrr cccaaauuussseeesss aaa rrreeesssiiissstttaaannnccceee ooofff 111...111 NNN... for Cambridge PPPPPPPP University and later (((iii))) DDDrrraaawww aaa dddiiiaaagggrrraaammm ssshhhooowwwiiinnnggg ttthhheee fffooorrrccceeesss aaaccctttiiinnnggg ooonnn ttthhheee bbbooottttttllleee aaannnddd ttthhheee Warden of the Royal direction of its acceleration. OOOOOOOO Mint. His tomb in (((iiiiii))) WWWrrriiittteee dddooowwwnnn ttthhheee eeeqqquuuaaatttiiiooonnn ooofff mmmoootttiiiooonnn ooofff ttthhheee bbbooottttttllleee... Westminster Abbey reads ‘Let mortals (((iiiiiiiii))) FFFiiinnnddd ttthhheee sssiiizzzeee ooofff ttthhheee bbbuuuoooyyyaaannncccyyy fffooorrrccceee... rejoice that there CCCCCCCC existed such and so great an ornament to Solution the Human Race’. TTTTTTTTTTTTTT (((((iiiii))))) TTTTThhhhheeeee fffffooooorrrrrccccceeeeesssss aaaaaccccctttttiiiiinnnnnggggg ooooonnnnn ttttthhhhheeeee bbbbbooooottttttttttllllleeeee aaaaannnnnddddd ttttthhhhheeeee aaaaacccccccccceeeeellllleeeeerrrrraaaaatttttiiiiiooooonnnnn aaaaarrrrreeeee ssssshhhhhooooowwwwwnnnnn iiiiinnnnn ttttthhhhhiiiiisssss dddiiiaaagggrrraaammm... FFFFFFFFFFFFFF BN Buoyancy AAAAAAAAAAAAAA The acceleration is shown with a RRRRRRRRRRRRRRFFFooorrrccceeesss aaaccctttiiinnnggg 0.75m s−2 different type of arrow. A double ooonnn ttthhheee bbbooottttttllleee arrow is often used. 1.1N DDDDDDDDDDDDDD 0.5g N The weight is always Water resistance shown as mg for moving bodies. Figure 3.9 (ii) The resultant force acting on the bottle is (B – 0.5 g – 1.1) upwards. The resulting equation B – 0.5 g – 1.1 = 0.5a is called the equation of motion. (iii) B – 4.9 – 1.1 = 0.375 0.5 × 0.75 B = 6.375 The buoyancy force on the bottle is 6.4 N. 48 9781510414426_CH03.indd 48 12/09/17 8:45 PM Example 3.3 A car of mass 900 kg travels at a constant speed of 20 m s−1 along a straight 3 horizontal road. Its engine is producing a driving force of 500 N. (i) What is the resistance to its motion? Later the driving force is removed and the car is brought to rest in a C time of 5 s with the same resistance to motion. h a (ii) Find the force created by the brakes, assuming it to be constant. p t e r 3 Solution F o r (i) The car is travelling at constant speed, so that the resultant force acting c e on the car is zero. s a a = 0 YYYYYYYY n d m PPPPPPPP o t i o Resultant = 500 – R R N 555000000 NNN n OOOOOOOO Figure 3.10 Let the resistive force be RRR NNNCCCCCCCC... 500 – R = 0 R = 500 TTTTTTTTTTTTTTTTTTTTTTT TTTTThhhhheeeee rrrrreeeeesssssiiiiissssstttttiiiiivvvvveeeee fffffooooorrrrrccccceeeee iiiiisssss 555550000000000 NNNNN..... So you expect a to be (((iiiiii))) TTThhheee cccaaarrr iiisss sssFFFFFFFFFFFFFFFFFFFFFFFlllooowwwiiinnnggg dddooowwwnnn... negative. a AAAAAAAAAAAAAAAAAAAAAAA B is constant, so that a Resultant = 500 – B 555000000 NNN is also constant and you RRRRRRRRRRRRRRRRRRRRRRR can use the constant BBB acceleration formulae. FFFiiiggguuurrreee 333...111111 DDDDDDDDDDDDDDDDDDDDDDD TTThhheee eeeqqquuuaaatttiiiooonnn ooofff mmmoootttiiiooonnn iiisss –––B – 500 = 900a ① 000 === 222000 +++ a × 5 Use v = u + at with u = 20, v = 0 and t = 5. a = –4 m s−2 Substituting in ① –B – 500 = 900 × –4 ⇒ B = 3100 N The braking force is 3100 N. 49 9781510414426_CH03.indd 49 12/09/17 8:45 PM Forces and Newton’s laws of motion Example 3.4 Two boxes A and B are descending vertically supported by a parachute. Box A has mass 100 kg. Box B has mass 75 kg and is suspended from box A by a light vertical wire. Both boxes are descending with acceleration 3 m s−2. (i) Draw a labelled diagram showing all the forces acting on box A and another diagram showing all the forces acting on box B. (ii) Write down separate equations of motion for box A and for box B. (iii) Find the tensions in both wires. Solution A (i) YYYYYYYYYYYYYYYYY T 2 T 1 B PPPPPPPPPPPPPPPPP Figure 3.12 A OOOOOOOOOOOOOOOOO B 3ms–2 333mmmsss–––222 CCCCCCCCCCCCCCCCC T 2 75g 111000000ggg FFFFFiiiiiggggguuuuurrrrreeeee 33333.....1111133333 AAAAAcccccccccceeeeellllleeeeerrrrraaaaatttttiiiiiooooonnnnn dddddooooowwwwwnnnnnwwwwwaaaaarrrrrdddddsssss..... TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT (((((iiiiiiiiii))))) BBBBBoooooxxxxx AAAAA::::: TTTTThhhhheeeee rrrrreeeeesssssuuuuullllltttttaaaaannnnnttttt dddddooooowwwwwnnnnnwwwwwaaaaarrrrrdddddsssss fffffooooorrrrrccccceeeee iiiiisssss T + 100 g – T so the 2 1 eeeqqquuuaaatttiiiooonnn ooofff mmmoootttiiiooonnn   iiisss Note FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF TTTTTTT +++++++ 111111100000000000000ggggggggg ––––– TTTTTTT === 333000000 ① Since 100a = 100 × 3 = 300 T is the tension in the 22222 11111 1 blue wire linking A to BBBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoooxxx BBB::: TTThhheee rrreeesssuuullltttaaannnttt dddooowwwnnnwwwaaarrrdddsss fffooorrrccceee iiisss 777555g – T so the equation of the parachute. T is the 2 2 mmmoootttiiiooonnn iiisss tension in the green wire linking A to B. RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRR 77777775555555ggggggggg ––––– T = 225 ② Since 75a = 75 × 3 = 225 2 T ≠ T 1 2 (((iiiiiiiii))) FFFrrrooommm ②: T = 75 × 9.8 – 225 2 DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD = 510 N DDDiiissscccuuussssssiiiooonnn pppoooiiinnnttt Substituting in ①: T = 510 + 100 × 9.8 – 300 IIIsss ttthhheee llleeevvveeelll ooofff aaaccccccuuurrraaacccyyy 1 gggiiivvveeennn iiinnn ttthhheeessseee aaannnssswwweeerrrsss = 1190 N justifi ed? The tension in the blue wire linking A to the parachute is 1365 N. The tension in the green wire linking A to B is 510 N. Exercise 3.1 ① Find the accelerations produced when a force of 100 N acts on an object (i) of mass 15 kg (ii) of mass 10 g (ii) of mass 1 tonne. ② A bullet of mass 20 g is fi red into a wall with a velocity of 400 m s−1. The bullet penetrates the wall to a depth of 10 cm. Find the resistance of the wall, assuming it to be uniform. 50 9781510414426_CH03.indd 50 12/09/17 8:45 PM ③ A car of mass 1200 kg is travelling along a straight level road. 3 (i) Calculate the acceleration of the car when a resultant force of 2400 N acts on it in the direction of its motion. How long does it take the car to increase its speed from 4 m s−1 to 12 m s−1? The car has an acceleration of 1.2 m s−2 when there is a driving force of C 2400 N. h a (ii) Find the resistance to motion of the car. p t e ④ A load of mass 5 kg is held on the end of a string. Calculate the tension in r 3 the string when F (i) the load is raised with an acceleration of 2.5 m s−2 or c (ii) the load is lowered with an acceleration of 2.5 m s−2 e s (iii) the load is raised with a constant speed of 2 m s−−−111 YYYYYYYYYYYYYYYYYY an d (iv) the load is raised with a deceleration of 2.5 mmm sss−−−222... m ⑤ A block A of mass 10 kg is connected to a PPPPPPPPPPPPPPPPPP o t block B of mass 5 kg byyy aaa llliiiggghhhttt iiinnneeexxxttteeennnsssiiibbbllleee io n ssstttrrriiinnnggg pppaaassssssiiinnnggg ooovvveeerrr aaa sssmmmoooooottthhh fififixxxeeeddd pppuuulllllleeeyyy... TTThhheee OOOOOOOOOOOOOOOOOO bbbllloooccckkksss aaarrreee rrreeellleeeaaassseeeddd fffrrrooommm rrreeesssttt wwwiiittthhh AAA 000...333 mmm abovvveee gggrrrooouuunnnddd llleeevvveeelll,,, aaasss ssshhhooowwwnnn iiinnn FFFiiiggguuurrreee 333...111444... (i) FFFiiinnnddd ttthhheee aaacccccceeellleeerrraaatttiiiooonnn ooofff ttthhheeeCCCCCCCCCCCCCCCCCC sssyyysssttteeemmm aaannnddd A B ttthhheee ttteeennnsssiiiooonnn iiinnn ttthhheee ssstttrrriiinnnggg... (ii) FFFiiinnnddd ttthhheee ssspppeeeeeeddd ooofff ttthhheee mmmaaasssssseeesss wwwhhheeennn AAA hhhiiitttsss 0.3m the ground. TTTTTTTTTTTTTTTT (iii) HHHHHooooowwwww fffffaaaaarrrrr dddddoooooeeeeesssss BBBBB rrrrriiiiissssseeeee aaaaafffffttttteeeeerrrrr AAAAA hhhhhiiiiitttttsssss ttttthhhhheeeee flflflflfloooooooooorrrrr Figure 3.14 aaannnddd ttthhheee ssstttrrriiinnnggg bbbeeecccooommmeeesss ssslllaaaccckkk??? FFFFFFFFFFFFFFFF ⑥ AAA bbbllloooccckkk AAA ooofff mmmaaassssss 111000 kkkggg iiisss lllyyyiiinnnggg A ooonnn aaa sssmmmoooooottthhh hhhooorrriiizzzooonnntttaaalll tttaaabbbllleee... AAAAAAAAAAAAAAAA LLLiiiggghhhttt iiinnneeexxxttteeennnsssiiibbbllleee ssstttrrriiinnngggsss cccooonnnnnneeecccttt AAA tttooo pppaaarrrtttiiicccllleee BBB ooofff mmmaaassssss 666 kg and B RRRRRRRRRRRRRRRR pppaaarrrtttiiicccllleee CCC ooofff mmmaaassssss 444 kg, which C hhhaaannnggg fffrrreeeeeelllyyy ooovvveeerrr sssmmmoooooottthhh pppuuulllllleeeyyysss Figure 3.15 DDDDDDDDDDDDDDDD aaattt ttthhheee eeedddgggeee ooofff ttthhheee tttaaabbbllleee... (((iii))) Draw force diagrams to show the forces acting on each mass. (ii) Write down separate equations of motion for A, B and C. (iii) Find the acceleration of the system and the tensions in the strings. ⑦ A truck of mass 1250 kg is towing a trailer of mass 350 kg along a horizontal straight road. The engine of the truck produces a driving force of 2500 N. The truck is subjected to a resistance of 250 N and the trailer to a resistance of 300 N. Figure 3.16 (i) Show, in separate diagrams, the horizontal forces acting on the truck and the trailer. (ii) Find the acceleration of the truck and trailer. (iii) Find the tension in the coupling between the truck and the trailer. 51 9781510414426_CH03.indd 51 12/09/17 8:46 PM

Description:
(i) Draw a labelled diagram showing all the forces acting on box A and another . The engine provides a driving force of. 29 000 N. All the A spaceship of mass 50 000 kg is travelling through space with speed. 5000 m s−1 . You will find it helpful to draw diagrams when answering these questions.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.