ebook img

aptitude & mental ability PDF

24 Pages·2017·0.69 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview aptitude & mental ability

TNPSC GROUP-I A CONSERVATOR OF FORESTS TEST vi – aptitude & mental ability 1. A shopkeeper marks his goods 30% above the cost price and allows 10% discount on the marked price. His profit per cent is: a) 10% b) 12% c) 17% d) 20% xU filf;fhuh; jd;Dila nghUl;fis mtw;wpd; mlf;f tpiyiatpl 30 tpOf;fhL mjpfkhf tpw;gid nra;a KbT nra;J> me;j eph;za tpiyapy; ,Ue;J 10 tpOf;fhL jsS; gb mspf;fpwhh;. mtUila ,yhgk; vj;jid tpOf;fhL? a) 10% b) 12% c) 17% d) 20% Solution Marked price = 130% of cost price Sale price = 130% - 10% of 130 = 117% of cost price Profit Per cent = 17% Alternative method: 3010 Profit per cent 3010 17% 100 2. A man bought an old typewriter for ì 1200 and spent ì 200 on its repair. He sold it for ì 1680. His profit per cent is: a) 20% b) 10% c) 8% d) 16% xU egh; xU gioa jl;lrR; g; nghwpia ì 1200 f;F thq;fp mijg; gOJ efP ;fk; nra;tjw;F ì 200 nryT nra;J> mij ì 1680f;F tpw;gid nra;jhh;. mtUila ,yhg tpOf;fhL: a) 20% b) 10% c) 8% d) 16% Solution Total cost of typerwriter = Rs.(1200+200) = Rs.1400 S.P = Rs.1680 Profit = Rs.(1680-1400) = Rs.280 2800 Hence Profit %  10020% 1400 1 | Page PH: 24339436, 42867555, 9840226187 3. If 3 toys are sold at the cost price of 4 toys of the same kind, the profit will be: 1 2 a) 25% b) 33 % c) 62 % d) 50% 3 3 4 nghk;ikfspd; mlf;f tpiyf;F mNj tifapyhd 3 nghk;ikfis tpw;gid nra;jhy;> ,yhgk; vj;jid tpOf;fhlhf ,Uf;Fk;? 1 2 a) 25% b) 33 % c) 62 % d) 50% 3 3 Solution Cost price of 4 toys = Selling price of 3 toys Cost price : Selling price = 3 : 4 1 1 Profit%  10033 % 3 3 8 4. If selling price of an article is times its cost price, the profit per cent on it is: 5 a) 120% b) 160% c) 40% d) 60% 8 xU nghUspd; tpw;gid tpiy> mjDila mlf;f tpiyiag; Nghy klqF; 5 vdpy;> me;jg; tpw;gid kPjhd ,yhg tpOf;fhL vtt; sT? a) 120% b) 160% c) 40% d) 60% Solution 8 3 Profit  1 5 5 3  100%60% 5 5. Sourav purchased 30 kg of rice at the rate of ì 10 per kg and 35 kg at the rate of ì 11 per kg. He mixed the two. At what price per kg (in ì ) should he sell the mixture to make a 30% profit in the transaction? a) 12.5 b) 13 c) 13.7 d) 14.25 nrsut; xU fpNyh `10 vd;w tpiyapy; 30 fpNyh mhprpiaAk;> xU fpNyh `11 vd;w tpiyapy; 35 fpNyh mhprpiaAk; thq;fpdhh;. mth; mtt; puz;ilAk; xd;whff; fye;jhh;. mth;> mej; f; fyitia xU fpNyh vd;d tpiyf;F tpw;why; mej; g; ghpkhw;wj;jpd; thapyhf mtUf;F 30 tpOf;fhL ,yhgk; fpilf;Fk;. a) 12.5 b) 13 c) 13.7 d) 14.25 Solution Total cost price (of 65kg) = 30 10 + 35  11 = 300 + 385 = 685 Total selling price = 685 + 30% of 685 = 890.50 890.50 Selling price per kg = 890.50  13.70 65 2 | Page PH: 24339436, 42867555, 9840226187 6. Given that 10% of A’s income = 15% of B’s income = 20% of C’s income. If sum of their income is ` 7800, then B’s income is a. ` 3600 b. ` 3000 c. ` 2400 d. ` 1800 A d; tUkhdj;jpy; 10 rjtPjKk;> B apd; tUkhdj;jpy; 15 rjtPjKk;> C apd; tUkhdj;jpy; 20 rjtPjKk; rkk.; ,k;%thpd; nkhj;j tUkhdk ; &.7800 vdpy; B apd; tUkhdk; vtt; sT? a. ` 3600 b. ` 3000 c. ` 2400 d. ` 1800 Solution 10% of A = 15% of B = 20% of C  2A = 3B = 4C A B C Dividing the ratio by LCM of 2, 3 and 4 i.e., by 12, we get :   6 4 3  A:B:C = 6:4:3 4 B ‘s income  78002400 13 7. A number, on subtracting 15 from it, reduces to its 80%. What is 40% of the number? a. 75 b. 60 c. 30 d. 90 xU vz;zpypUe;J 15 I fopf;Fk; nghOJ mej; vz;zpd; kjpg;G Fiwe;J 80 rjtPjkhfpwJ> vdpy; mej; vz;zpy; 40 rjtPj kjpg;G ahJ? a. 75 b. 60 c. 30 d. 90 Solution Number is reduced by 15 or 20% of original number  40 % of number = 2  20% of number =2  15 = 30 8. If 60% of A’s income is equal to 75% of B’s income, then B’s income is equal to x% of A’s income. The value of x is: a. 70 b. 60 c. 80 d. 90 A d; tUkhdj;jpy; 60 rjtPjKk;> B apd; tUkhdj;jpy; 75 rjtPjKk; rkk ; vdpy; B apd; tUkhdkhdJ A apd; tUkhdj;jpy; ‘x’ rjtPjkhFk;. vdpy; ‘x’ d; kjpg;G ahJ? a. 70 b. 60 c. 80 d. 90 Solution 60% of A’s income = 75% of B’s income A’s income : B’s income = 75 : 60 = 5 : 4 4  Required percentage  10080 5 3 | Page PH: 24339436, 42867555, 9840226187 9. If the numerator of a fraction is increased by 20% and its denominator by 25%, 3 then the fraction so obtained is what is the original fraction? 5 3 2 5 a. b. c. d. 1 5 8 8 xU gpd;dj;jpy; njhFjpapd; kjpg;G 20 rjtPjk; mjpfhpf;fpwJ> gFjpapd; kjpg;G 25 3 rjtPjk; FiwfpwJ> gpd;G mg;gpd;dk; khWfpwJ> vdpy; mg;gpd;dj;jpidf; fhz;f. 5 3 2 5 a. b. c. d. 1 5 8 8 Solution Let the numerator be x and denominator be y. x Now, fraction  y 120x 3 Then, from question   125y 5 x 3 125   y 5 120 x 3 25 5    y 5 24 8 5 Original fraction = 8 10. In a group of students, 70% can speak English and 65% can speak Hindi. If 27% of the students can speak none of the two languages, then what per cent of group can speak both the languages? xU khzth;fs; FOtpy;> 70 rjtPjk; Ngh; Mqf; pyk; NgRgth;fs;> 65 rjtjP k; Ngh; ,e;jp NgRgth;fs;. 27 rjtPjk; khzth;fs; Nkw;fz;l ,uz;L nkhopfisAk; Ngrhjthf; s; vdpy;> ,uz;L nkhopfisAk; NgRk; khzth;fs; vj;jid rjtPjk;? A. 38% B. 62% C. 28% D. 23% Solution Let total students = 100 Students who know none of the two lanugages = 27 Remaining students = 100 – 27 = 73 Students who know both langugages = 70 + 65 – 73 = 62% 11. If the price of gold increased by 20% on Monday and decreased by 20% on Tuesday then by what percentage is Tuesday's price higher or lower than the initial price of that week? 4 | Page PH: 24339436, 42867555, 9840226187 jqf; j;jpd; tpiy jpq;fl;fpoik 20% mjpfhpf;fpwJ nrt;tha;fpoikapy; 20% FiwfpwJ vdpy; nrt;thad;W jq;fj;jpd; tpiy thuj;jpd; njhlf;ftpiyiatpl Fiwthd rjtPjk; my;yJ mjpfkhd rjtPjk; vtt; sT? a. 4% lower b. 12.5% higher c. 10% lower d. No change Solution I×D 2020 Formula= I-D- = 2020 4% 100 100 12. The price of a loaf of bread was increased by 25%. How many loaves can be purchased for the amount that used to buy 300 loaves? nuhl;bj; Jz;bd; tpiy 25% Mf cah;ej; hy;> 300 nuhl;bj; Jz;Lfs; thq;fpa njhifapy; vj;jid nuhl;bj; Jz;Lfs; thq;f KbAk;? A. 240 B. 250 C. 260 D. 275 Solution 1 bread cost = Rs.1 300 loaves = 300 Rs. 1 bread 25% increased Price = 1.25 300 nuhl;bj; Jz;Lfs ; thq;fpa njhifapy; No of loaves in purchased for the amount buy 300 loaves 300 300   100  240 1.25 125 13. If x% of y is 100 and y% of z is 200, then the relation between x and z. yd; x rjtPjk; 100 kw;Wk; zd; y rjtPjk; 200 vdpy; xf;Fk; zf;Fk; cs;s njhlh;G. x x a. z  b. z 2x c. z  d. z 4x 2 4 Solution x y y100------ (1) z 100------ (2) Given 100 100 x 1 eqn (1)(2)  z 2 z = 2x 5 | Page PH: 24339436, 42867555, 9840226187 14. If A exceeds B by 40%, B is less than C by 20%, then A : C is : a. 28 : 25 b. 26 : 25 c. 3 : 2 d. 3 : 1 A d; kjpg;G B ia tpl 40% mjpfk;> B apd; kjpg;G C I tpl 20% FiwT vdpy; A : C tpfpjk; ahJ? a. 28 : 25 b. 26 : 25 c. 3 : 2 d. 3 : 1 Solution A : B = 140 : 100 B : C = 80 : 100 A A B 140 80 28       C B C 100 100 25 15. Price of cloth having been raised by 75%, by how much per cent a householder must reduce his consumption of cloth so as not to increase his expenditure? 6 1 a. 42 % b. 57 % c. 75% d. 50% 7 7 Jzpapd; tpiy 75% mjpfhpf;fpwJ> ,Ugg; pDk;> mth;fsJ FLk;g tuT nrytpy; ve;jtpj khw;wKk; ,y;iy vdpy;> Jzp cgNahfpf;Fk; msit vt;tsT rjtjP k; Fiwf;f Ntz;Lk;? Solution: 100R 10075 6 Formula:  42 % 100R 175 7 16. The population of town 2 years ago was 62,500. Due to migration to big cities, it decreases every year at the rate of 4%. The present population of the town is: A. 56,700 B. 57,600 C. 58,800 D. 60,000 xU efuj;jpd; kf;fs;njhif ,uz;L Mz;LfSf;F Kd;G 62>500 nghpa efuq;fSf;F ,lk;ngah;tjhy; mee; fufj;jpd; kf;fs;njhif Mz;Lf;F 4% FiwfpwJ. me;efuj;jpd; jw;Nghija kf;fs;njhif vtt; sT? A. 56,700 B. 57,600 C. 58,800 D. 60,000 Solution 2  4   24 24 Present population 62500 1  62500  57600      100  25 25 7 17. Find the rate percent at which a sum of money becomes times in 3 years. 6 7 xU mryhdJ 3 tUlj;jpy; klqf; hf MFnkdpy; mjd; tl;b tpfpjk; 6 vtt; sT? 5 5 a. 12% b. 5 % c. 6 % d. 24% 9 9 Solution 6 | Page PH: 24339436, 42867555, 9840226187 Principal = P 7P Amount  6 7P P SI= -P= 6 6 SI×100 P×100 50 R= =  P×T 6×P×3 9 5 R = 5 % 9 18. A lent ì 450 to B for 2 years, and ì 500 to c for 3 years, at a certain rate of simple interest. If he received altogether from both ì 120 as interest, find the rate interest. (a) 3% (b) 4% (c) 5% (d) 6% A vd;gth; B f;F 2 Mz;LfSf;F &.450 I fldhf nfhLj;jhh;> A vd;gth; C f;F 3 Mz;LfSf;F &.500 I fldhf nfhLj;jhh;> ,t;tpUtUk; &.120 jdptl;bahf nfhLj;jdh;> vdpy; Mz;L tl;b tjP k; vtt; sT? (a) 3% (b) 4% (c) 5% (d) 6% Solution 4502x 5003x   120      100   100  9x + 15x = 120 x = 5% 19. The Simple Interest on Rs.3,500 at 8% from 4th February, 1996 to 24th April, 1996 is... a. Rs.61.37 b. Rs.22.40 c. Rs.224 d. Rs.70.20 &.3500 I 8% jdptl;bapy; gpg;uthp 4> 1996 ypUe;J Vg;uy; 24> 1996 tiu fpilf;Fk; jdptl;b vtt; sT? a. Rs.61.37 b. Rs.22.40 c. Rs.224 d. Rs.70.20 Solution P = Rs.3500 R = 8% N = (Feb 25 + Mar 31 + April 24) = 16/73 3500168 SI  61.37 10073 20. A sum of money 5 times of itself in 22 years. In how many years would it become 4 times of itself? a. 16 years and 3 months b. 16 years and 2 months c. 16 years and 9 months d. 16 years and 6 months xU Fwpg;gpl;l mry; njhif 22 Mz;Lfspy; 5 klq;fhfpwJ vdpy;> mNj mry; njhif vj;jid Mz;Lfspy; 4 klq;F njhifahFk;? 7 | Page PH: 24339436, 42867555, 9840226187 a. 16 Mz;Lfs; kw;Wk; 3 khjk; b. 16 Mz;Lfs; kw;Wk; 2 khjk; c. 16 Mz;Lfs; kw;Wk; 9 khjk; d. 16 Mz;Lfs; kw;Wk; 6 khjk; Solution R 400=100×22× 100 400 R= % 22 100×N×400×1 66 300= = 22×100 4 1 N=16 years 2 21. A man borrowed Rs.12,000 from two persons. He paid 5% interest to one and 8% per annum to the other. In one year he paid total interest Rs.840. How much did he borrow at 5% rate? a. Rs.7500 b. Rs.4500 c. Rs.8000 d. Rs.4000 xUth; &.12000 I ,uz;L egh;fsplk; ,Ue;J fldhf ngw;whh;. ,jpy; Kjy; egh; 5% tl;bAk; kw;Wk; ,uz;lhk; egh; 8% tl;bAk; ngw;wdh;. ,t;tpUtUf;Fk; Nrh;j;J xU Mz;L Kbtpy; &.840 tl;bahf nfhLj;jhh; vdpy;> 5% tl;bapy; ngw;w fld; njhif ahJ? a. Rs.7500 b. Rs.4500 c. Rs.8000 d. Rs.4000 Solution x15 12000x18   Rs.840 100 100 5x960008xRs.84000 3xRs.12000 x = 4000 22. A sum of money amounts to Rs.7,250 after 2 years and Rs.8,500 after 4 years at the same rate of simple interest. What is the rate percent? a. 14.02% b. 8.42% c. 10.42% d. 11.42% xU Fwpg;gpl;l njhif 2 tUlq;fspy; &. 7250 MfTk; NkYk; 4 tUlq;fspy; &. 8500 MfTk; Kjph;T milfpwJ. vdpy; tl;b tjP k;? a. 14.02% b. 8.42% c. 10.42% d. 11.42% Solution P4SI8500 (2) P2SI7250(1) 2SI 1250 SI = 625 P + 2 (625) = 7250 8 | Page PH: 24339436, 42867555, 9840226187 P = 6000 1250100 R  10.42% 60002 23. Find out compound interest on 16,000 at 15% per annum, compounded yearly for 3 years. a. Rs.7200 b. Rs.9000 c. Rs.8343 d. Rs.8334 &.16000 I 15% $l;Ltl;bapy; 3 Mz;LfSf;F fpilf;fg;ngUk; tl;bj;njhif vtt; sT? a. Rs.7200 b. Rs.9000 c. Rs.8343 d. Rs.8334 Solution n  R  CI=P 1+ -P    100 3  15  16000 1+ -16000    100 23 23 23 =16000   16000 20 20 20 2433416000 8334 24. The compound interest on Rs.15,625 at 8% per annum is Rs.4058. The period (in years) is .... a. 3 years b. 2 ½ years c. 2 years d. 4 years &.15,625I 8 rjtjP $l;Ltl;bapy; vj;jid Mz;Lfspy; tl;bj;njhif &.4058 fpilf;Fk;? Solution  R n  CI P1  1  100  n  8  405815625 1 1    100 n  4058  27 1       15625 25 3 19683 27      15625 25 N = 3 years 25. The C.I. on Rs.24,000 at 10% per annum for 1 ½ years where interest being compounded half-yearly is _____ 9 | Page PH: 24339436, 42867555, 9840226187 6 khjj;jpw;F xU Kiw tl;b fzf;fplg;gl;lhy; &.24>000f;F 1 ½ Mz;L fhyj;jpw;F 10% tl;b tPjj;jpy; fpilf;Fk; $l;L tl;b vd;d? A. Rs. 3783 B. Rs.3873 C. Rs.3378 D. Rs.3837 Solution  105 105 105 C.I 24000   24000 27783240003783    100 100 100 26. A sum on compound interest becomes three times in 4 years. How many years will it take to become 27 times the original if the interest is calculated at the same rate? xU njhifahdJ $l;L tl;b %yk; ehd;F tUlq;fspy; 3 klq;fhfpwJ. ,Nj tl;b tPjk; %yk; mej; njhifahdJ vj;jid tUlq;fSf;Fg; gpwF 27 klqf; hFk;? a. 8 years b. 12 years c. 24 years d. 36 years Solution 3T  4years 9T  8 years 27T 12years 27. A man invested Rs. 25,000 at 4% per annum in compound interest and received the amount Rs. 27,040 after n years, then value of n is xUth;> mry; &. 25>000 &ghia Mz;Lf;F $l;L tl;b 4% tjP k; KjyLP nra;J n Mz;Lfs; fopj;J & 27,040 I njhifahfg; ngWfpwhh; vdpy; n-d; kjpg;G ahJ? a. 2 yrs b. 3 yrs c. 2½ yrs d. 3½ yrs Solution n n 2 104 26 2704 26 25000 27040          100 25 2500 25  n = 2 years 28. The least number of complete years in which a sum of money put out at 20% compound interest will be more than doubled is 20% $l;L tl;b tpfpjj;jpy; itf;fg;gl;l xU njhif ,UklqF; f;F Nky; Mtjw;F krP ;rpW KO Mz;Lfs; vd;d? A. 3 B. 4 C. 5 D. 6 Solution 10 | Page PH: 24339436, 42867555, 9840226187

Description:
TNPSC GROUP-I A CONSERVATOR OF FORESTS. TEST vi .. 5>000f;F 2 Mz;Lfspy; 12% tl;b tpfpjj;jpy; jdptl;b kw;Wk; $l;L tl;bf;fhd tpj;jpahrk; a.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.