ebook img

Approximations and endomorphism algebras of modules PDF

665 Pages·2006·2.79 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Approximations and endomorphism algebras of modules

de Gruyter Expositions in Mathematics 41 Editors V.P.Maslov, Academy of Sciences, Moscow W.D.Neumann, Columbia University, New York R.O.Wells, Jr., International University, Bremen Approximations and Endomorphism Algebras of Modules by Rüdiger Göbel and Jan Trlifaj ≥ Walter de Gruyter · Berlin · New York Authors RüdigerGöbel JanTrlifaj Fachbereich6,Mathematik KatedraalgebryMFF UniversitätDuisburg-Essen UniverzitaKarlova 45117Essen vPraze Germany Sokolovska´ 83 E-Mail:[email protected] 18675Prague8 CzechRepublic E-Mail:[email protected] Mathematics Subject Classification 2000: First: 1602, Second: 03C60, 03Exx, 13-XX, 16-XX, 20Kxx Key words: approximations of modules, infinite dimensional tilting theory, prediction principles, realizations of algebras as endomorphism algebras, modules with distinguished submodules, E-rings. (cid:2)(cid:2) Printedonacid-freepaperwhichfallswithintheguidelines oftheANSItoensurepermanenceanddurability. LibraryofCongressCataloging-in-PublicationData Goebel,Ruediger. Approximationsandendomorphismalgebrasofmodules/byRue- digerGoebelandJanTrlifaj. p. cm(cid:2)(DeGruyterexpositionsinmathematics;41) Includesbibliographicalreferencesandindex. ISBN-13:978-3-11-011079-1(alk.paper) ISBN-10:3-11-011079-2(alk.paper) 1. Modules (Algebra) 2. Moduli theory. 3. Approximation theory. I.Trlifaj,Jan. II.Title. QA247.G63 2006 5121.42(cid:2)dc22 2006018289 ISSN 0938-6572 ISBN-13: 978-3-11-011079-1 ISBN-10: 3-11-011079-2 BibliographicinformationpublishedbyDieDeutscheBibliothek DieDeutscheBibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataisavailableintheInternetat(cid:3)http://dnb.ddb.de(cid:4). (cid:2)Copyright2006byWalterdeGruyterGmbH&Co.KG,10785Berlin,Germany. All rights reserved, including those of translation into foreign languages. No part of this book may be reproduced or transmitted in any form or by any means, electronic or mechanical, includingphotocopy,recording,oranyinformationstorageorretrievalsystem,withoutpermission inwritingfromthepublisher. Printingandbinding:Hubert&Co.GmbH&Co.KG,Göttingen. Coverdesign:ThomasBonnie,Hamburg. For our wives Heidi and Kateˇrina and children Ines, and Lucie, Justina, Magdalena, Šimon and Daniel Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi ListofSymbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi 1 Someusefulclassesofmodules . . . . . . . . . . . . . . . . . . . . . 1 1.1 S–completions . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 (cid:2) SupportofelementsinB —afirststep . . . . . . . . . . . . . 9 UncountableS incompletions . . . . . . . . . . . . . . . . . . 11 Modulesofcardinality≤ 2ℵ0 . . . . . . . . . . . . . . . . . . 13 1.2 Pure–injectivemodules . . . . . . . . . . . . . . . . . . . . . . 20 Directlimits,finitelypresentedmodulesandpuresubmodules . 21 Characterizationsofpure–injectivemodules . . . . . . . . . . 34 1.3 Locallyprojectivemodules . . . . . . . . . . . . . . . . . . . . 43 1.4 Factorsofproductsandslendermodules . . . . . . . . . . . . . 58 1.5 SlendermodulesoverDedekinddomains . . . . . . . . . . . . . 84 2 Approximationsofmodules . . . . . . . . . . . . . . . . . . . . . . 94 2.1 Preenvelopesandprecovers . . . . . . . . . . . . . . . . . . . . 94 2.2 CotorsionpairsandTor–pairs . . . . . . . . . . . . . . . . . . . 99 2.3 Minimalapproximations . . . . . . . . . . . . . . . . . . . . . . 106 3 Completecotorsionpairs . . . . . . . . . . . . . . . . . . . . . . . . 112 3.1 Extanddirectlimits . . . . . . . . . . . . . . . . . . . . . . . . 112 3.2 Thevarietyofcompletecotorsionpairs . . . . . . . . . . . . . . 117 3.3 Extandinverselimits . . . . . . . . . . . . . . . . . . . . . . . 125 4 Deconstructionofcotorsionpairs . . . . . . . . . . . . . . . . . . . 134 4.1 Approximationsbymodulesoffinitehomologicaldimensions . . 134 4.2 HillLemmaandKaplanskyTheoremforcotorsionpairs . . . . . 142 4.3 Closurepropertiesprovidingforcompleteness . . . . . . . . . . 149 Thetiltingcase . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Thecotiltingcase . . . . . . . . . . . . . . . . . . . . . . . . 157 4.4 Matliscotorsionandstronglyflatmodules . . . . . . . . . . . . 163 viii Contents Stronglyflatmodulesovervaluationdomains . . . . . . . . . . 173 4.5 Theclosureofacotorsionpair . . . . . . . . . . . . . . . . . . . 178 Directlimitsofmodulesofprojectivedimension≤ 1 . . . . . 184 5 Tiltingapproximations . . . . . . . . . . . . . . . . . . . . . . . . . 188 5.1 Tiltingmodules . . . . . . . . . . . . . . . . . . . . . . . . . . 188 5.2 Classesoffinitetype . . . . . . . . . . . . . . . . . . . . . . . . 201 Deconstructiontocountabletype . . . . . . . . . . . . . . . . 202 DefinabilityandtheMittag–Lefflercondition . . . . . . . . . . 208 Finitetypeandresolvingsubcategories . . . . . . . . . . . . . 213 5.3 Injectivitypropertiesoftiltingmodules . . . . . . . . . . . . . . 219 6 1–tiltingmodulesandtheirapplications . . . . . . . . . . . . . . . 224 6.1 Tiltingtorsionclasses . . . . . . . . . . . . . . . . . . . . . . . 224 6.2 Thestructureoftiltingmodulesandclassesoverparticularrings . 228 1–tiltingclassesoverartinalgebras . . . . . . . . . . . . . . . 228 TiltingmodulesandclassesoverPrüferdomains . . . . . . . . 231 ThecaseofvaluationandDedekinddomains . . . . . . . . . . 240 6.3 Matlislocalizations . . . . . . . . . . . . . . . . . . . . . . . . 242 7 Tiltingapproximationsandthefinitisticdimensionconjectures . . . 255 7.1 FinitisticdimensionconjecturesandthetiltingmoduleT . . . . 255 f 7.2 Aformulaforthelittlefinitisticdimensionofrightartinianrings 263 7.3 ArtinianringswithP<ω contravariantlyfinite . . . . . . . . . . 267 8 Cotiltingmodules . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 8.1 Cotiltingclassesandtheclassesofcofinitetype . . . . . . . . . 274 8.2 1–cotiltingmodulesandcotiltingtorsion–freeclasses . . . . . . 281 CotiltingmodulesandclassesoverDedekinddomains . . . . . 284 Ext–rigidsystems . . . . . . . . . . . . . . . . . . . . . . . . 289 9 TheBlackBoxanditsrelatives . . . . . . . . . . . . . . . . . . . . . 293 9.1 SurveyofpredictionprinciplesusingZFCandmore . . . . . . . 293 ThreeequivalentversionsoftheDiamondPrinciple . . . . . . 294 TheWeakDiamondPrinciple . . . . . . . . . . . . . . . . . . 301 Applications: the existence of almost free R–modules with a prescribedendomorphismring . . . . . . . . . . . . . . . . . 302 9.2 TheBlackBoxes . . . . . . . . . . . . . . . . . . . . . . . . . . 312 TheStrongBlackBox . . . . . . . . . . . . . . . . . . . . . . 313 ThemoreGeneralBlackBox . . . . . . . . . . . . . . . . . . 340 9.3 TheShelahElevator . . . . . . . . . . . . . . . . . . . . . . . . 353 Contents ix Thecombinatorialpartoftheelevator . . . . . . . . . . . . . . 353 10 Independenceresultsforcotorsionpairs . . . . . . . . . . . . . . . 359 10.1 CompletenessofcotorsionpairsundertheDiamondPrinciple . . 360 10.2 Uniformizationandcotorsionpairsnotgeneratedbyaset . . . . 364 11 Thelatticeofcotorsionpairs . . . . . . . . . . . . . . . . . . . . . . 374 11.1 Ultra–cotorsion–freemodulesandtheStrongBlackBox . . . . . 374 11.2 Rationalcotorsionpairs . . . . . . . . . . . . . . . . . . . . . . 383 11.3 Embeddingposetsintothelatticeofcotorsionpairs . . . . . . . 392 12 Realizingalgebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402 12.1 Realizingalgebrasofsize≤ 2ℵ0 . . . . . . . . . . . . . . . . . . 402 12.2 ℵ1–freemodulesofcardinalityℵ1 . . . . . . . . . . . . . . . . . 410 Theconstructionofmodules . . . . . . . . . . . . . . . . . . . 412 ThePigeon–holeLemma . . . . . . . . . . . . . . . . . . . . 417 Comparingbranchingpoints . . . . . . . . . . . . . . . . . . . 420 Proofofthetheorem . . . . . . . . . . . . . . . . . . . . . . . 424 12.3 Realizingallcotorsion–freealgebras . . . . . . . . . . . . . . . 426 ThemainrealizationtheoremandtheStrongBlackBox . . . . 428 ThemainrealizationtheoremandtheGeneralBlackBox . . . 436 Cotorsion–freemodules . . . . . . . . . . . . . . . . . . . . . 447 Almostcotorsion–free,separable,slenderandℵ1–freemodules 448 Otherclassesoftorsion–freemodules . . . . . . . . . . . . . . 457 Adiscussionofrealizationtheoremsfortorsionandmixedmod- ules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457 12.4 Algebrasofrow–and–column–finitematrices . . . . . . . . . . . 459 13 E(R)–algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462 13.1 ClassicalE(R)–algebras. . . . . . . . . . . . . . . . . . . . . . 462 Excursion: localizationsandcellularcomplexes . . . . . . . . 462 ClassicalE(R)–algebras,thecontinuation . . . . . . . . . . . 467 13.2 Constructingtorsion–free,reducedE(R)–algebrasofrank≤ 2ℵ0 470 13.3 E(R)–algebrasanduniquelytransitivemodules . . . . . . . . . 472 UT–modulesoverprincipalidealdomains . . . . . . . . . . . 474 Pure–invertiblealgebras . . . . . . . . . . . . . . . . . . . . . 475 TheinductivestepfortheconstructionofUT–modules . . . . . 477 TheconstructionofUT–modules . . . . . . . . . . . . . . . . 479 13.4 E(R)–algebrasandtheStrongBlackBox . . . . . . . . . . . . . 481 13.5 Discussing ℵ1–freeE(R)–algebrasofcardinalityℵ1 . . . . . . 487 13.6 MixedE(R)–modulesoverDedekinddomains . . . . . . . . . . 487

Description:
This monograph provides a thorough treatment of two important parts of contemporary module theory: approximations of modules and their applications, notably to infinite dimensional tilting theory, and realizations of algebras as endomorphism algebras of groups and modules. Attention is also given to
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.