ebook img

Approximation of solutions of SDEs driven by a fractional Brownian motion, under pathwise uniqueness PDF

0.13 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Approximation of solutions of SDEs driven by a fractional Brownian motion, under pathwise uniqueness

ModernStochastics:TheoryandApplications3(2016)303–313 DOI:10.15559/16-VMSTA69 7 1 0 2 n a J Approximation of solutions of SDEs driven by 5 a fractional Brownian motion, under pathwise ] R uniqueness P . h t OussamaElBarrimia,1,∗,YoussefOukninea,b a m aCadiAyyadUniversity,FacultyofSciencesSemlalia, [ Av.MyAbdellah,2390,Marrakesh,Morocco 1 bHassanIIAcademyofSciencesandTechnologyRabat,Morocco v 4 [email protected](O.ElBarrimi),[email protected](Y.Ouknine) 4 2 Received:29July2016,Revised:12December2016,Accepted:13December2016, 1 Publishedonline:20December2016 0 . Abstract Ouraiminthispaperistoestablishsomestrongstabilitypropertiesofasolution 1 of a stochastic differential equation driven by a fractional Brownian motion for which the 0 pathwiseuniquenessholds.TheresultsareobtainedusingSkorokhod’sselectiontheorem. 7 1 Keywords FractionalBrownianmotion,Stochasticdifferentialequations : v 2010MSC 60G15,60G22 i X r a 1 Introduction Considera fractionalBrownianmotion(fBm), a self-similar Gaussian processwith stationary increments. It was introduced by Kolmogorov [5] and studied by Man- delbrotand Van Ness [6]. The fBm with Hurst parameter H ∈ (0,1) is a centered Gaussianprocesswithcovariancefunction 1 R (t,s)=E BHBH = t2H +s2H −|t−s|2H . H t s 2 (cid:0) (cid:1) (cid:0) (cid:1) ∗Correspondingauthor. 1Thisauthorissupported bytheCNRST“Centre National pourlaRecherche Scientifique etTech- nique”,grantNo.I003/034,Rabat,Morocco. ©2016TheAuthor(s).PublishedbyVTeX.OpenaccessarticleundertheCCBYlicense. www.i-journals.org/vmsta 304 O.ElBarrimi,Y.Ouknine If H = 1/2, then the process B1/2 is a standard Brownian motion. When H 6= 1, 2 BH isneitherasemimartingalenoraMarkovprocess,sothatmanyofthetechniques employedinstochasticanalysisarenotavailableforanfBm.Theself-similarityand stationarityofincrementsmakethefBmanappropriatemodelformanyapplications indiversefieldsfrombiologytofinance.Wereferto[7]fordetailsonthesenotions. Considerthefollowingstochasticdifferentialequation(SDE) dX =b(t,X )dt+dBH, t t t (1) (X0 =x∈Rd, where b : [0,T]×Rd → Rd is a measurablefunction,andBH is a d-dimensional fBm with HurstparameterH < 1/2whose componentsare one-dimensionalinde- pendentfBmsdefinedonaprobabilityspace(Ω,F,{F } ,P),wherethefiltra- t t∈[0,T] tion{F } isgeneratedbyBH,t∈[0,T],augmentedbytheP-nullsets.Ithas t t∈[0,T] t beenprovedin[2]thatifbsatisfiestheassumption b∈L1,∞ :=L∞ [0,T];L1 Rd ∩L∞ Rd , (2) ∞ forH < 1 ,thenEq.(1)hasa(cid:0)uniquestr(cid:0)ong(cid:1)solutio(cid:0)n,w(cid:1)h(cid:1)ichwillbeassumed 2(3d−1) throughoutthispaper. NoticethatifthedriftcoefficientisLipschitzcontinuous,thenEq.(1)hasaunique strongsolution,whichis continuouswithrespectto theinitialcondition.Moreover, thesolutioncanbeconstructedusingvariousnumericalschemes. Our purpose in this paper is to establish some stability results under the path- wiseuniquenessofsolutionsandunderweakregularityconditionsonthedriftcoef- ficientb.Wementionthataconsiderableresultinthisdirectionhasbeenestablished in[1]whenanfBmisreplacedbyastandardBrownianmotion. The paper is organized as follows. In Section 2, we introduce some properties, notation,definitions,andpreliminaryresults.Section3isdevotedtothestudyofthe variationof solutionwith respectto the initial data. In the last section, we dropthe continuityassumptiononthedriftandtrytoobtainthesameresultasinSection3. 2 Preliminaries Inthissection,wegivesomepropertiesofanfBm,definitions,andsometoolsused intheproofs. ForanyH <1/2,letusdefinethesquare-integrablekernel KH(t,s)=cH t H−12 − H − 1 s12−H t(u−s)H−21uH−32 du , t>s, s 2 "(cid:18) (cid:19) (cid:18) (cid:19) Zs # wherec =[ 2H ]1/2,t>s. H (1−2H)β(1−2H,H+1)) 2 Notethat H−1 ∂KH(t,s)=cH H − 1 t 2(t−s)H−32. ∂t 2 s (cid:18) (cid:19)(cid:18) (cid:19) ApproximationofsolutionsofSDEsdrivenbyfBm,underpathwiseuniqueness 305 Let BH = {BH, t ∈ [0,T]} be an fBm defined on (Ω,F,{F } ,P). We t t t∈[0,T] denotebyζ thesetofstepfunctionson[0,T].LetHbetheHilbertspacedefinedas theclosureofζ withrespecttothescalarproduct h1 ,1 i =R (t,s). [0,t] [0,s] H H Themapping1 →BH canbeextendedtoanisometrybetweenHandtheGaus- [0,t] t sian subspace of L2(Ω) associated with BH, and such an isometry is denoted by ϕ→BH(ϕ). NowweintroducethelinearoperatorK∗ fromζ toL2([0,T])definedby H b ∂K K∗ϕ (s)=K (b,s)ϕ(s)+ ϕ(t)−ϕ(s) H(t,s)dt. H H ∂t Zs (cid:0) (cid:1) (cid:0) (cid:1) TheoperatorK∗ isanisometrybetweenζ andL2([0,T]),whichcanbeextendedto H theHilbertspaceH. DefinetheprocessW ={W ,t∈[0,T]}by t W =BH K∗ −11 . t H [0,t] ThenW isaBrownianmotion;moreov(cid:0)e(cid:0)r,BH(cid:1)hasthe(cid:1)integralrepresentation t BH = K (t,s)dW(s). t H Z0 WeneedalsotodefineanisomorphismK fromL2([0,T])ontoIH+12(L2)associ- H 0+ atedwiththekernelK (t,s)intermsofthefractionalintegralsasfollows: H (KHϕ)(s)=I02+Hs21−HI012+−HsH−21ϕ, ϕ∈L2 [0,T] . Note that, for ϕ ∈ L2([0,T]), Iα is the left fractionalRiema(cid:0)nn-Lio(cid:1)uville integral 0+ operatoroforderαdefinedby 1 x Iα ϕ(x)= (x−y)α−1ϕ(y)dy, 0+ Γ(α) Z0 whereΓ isthegammafunction(see[3]fordetails). TheinverseofK isgivenby H KH−1ϕ (s)=s21−HD012+−HsH−21D02+Hϕ(s), ϕ∈I0H++12 L2 , where for(cid:0)ϕ ∈ I(cid:1)H+21(L2), Dα is the left-sided Riemann Liouvil(cid:0)le d(cid:1)erivative of 0+ 0+ orderαdefinedby 1 d x ϕ(y) Dα ϕ(x)= dy. 0+ Γ(1−α)dx (x−y)α Z0 Ifϕisabsolutelycontinuous(see[8]),then K−1ϕ (s)=sH−21I12−Hs21−Hϕ′(s). (3) H 0+ (cid:0) (cid:1) 306 O.ElBarrimi,Y.Ouknine Definition2.1. Onagivenprobabilityspace(Ω,F,P),aprocessXiscalledastrong solutionto(1)if (1) Xis{F } adapted,where{F } isthefiltrationgeneratedbyBH,t∈ t t∈[0,T] t t∈[0,T] t [0,T]; (2) X satisfies(1). Definition2.2. Asextuple(Ω,F,{F } ,P,X,BH)iscalleda weaksolution t t∈[0,T] to(1)if (1) (Ω,F,P) is a probabilityspace equipped with the filtration {F } that t t∈[0,T] satisfiestheusualconditions; (2) X isan{F } -adaptedprocess,andBH isan{F } -fBm; t t∈[0,T] t t∈[0,T] (3) X andBH satisfy(1). Definition 2.3 (Pathwise uniqueness). We say that pathwise uniqueness holds for Eq.(1)ifwhenever(X,BH)and(X,BH)aretwoweaksolutionsofEq.(1)defined on the same probability space (Ω,F,(F ) ,P), then X and X are indistin- t t∈[0,T] guishable. e Themaintoolusedinthe proofsisSkorokhod’sselectiontheoreme givenbythe followinglemma. Lemma 2.4. ([4], p. 9) Let (S,ρ) be a complete separable metric space, and let P, P , n = 1,2,..., be probabilitymeasureson (S,B(S)) suchthatP converges n n weakly to P asn → ∞. Then,ona probabilityspace (Ω,F,P), we canconstruct S-valuedrandomvariablesX,X ,n=1,2,...,suchthat: n e e e (i) P = PXn,n = 1,2,...,andP = PX,wherePXn andPX arerespectively n thelawsofX andX; n e e e e (ii) X convergestoX P-a.s. n We will also make use of the following result, which gives a criterion for the e tightnessofsequencesoflawsassociatedwithcontinuousprocesses. Lemma 2.5. ([4], p. 18) Let {Xn, t ∈ [0,T]}, n = 1,2,..., be a sequence of d- t dimensionalcontinuousprocessessatisfyingthefollowingtwoconditions: (i) ThereexistpositiveconstantsM andγ suchthatE[|Xn(0)|γ] ≤ M forevery n=1,2,...; (ii) thereexistpositiveconstantsα,β,M ,k =1,2,...,suchthat,foreveryn≥1 k andallt,s∈[0,k],k =1,2,..., E Xn−Xn α ≤M |t−s|1+β. t s k (cid:2)(cid:12) (cid:12) (cid:3) Then, there exist a subsequenc(cid:12)e(n ), a p(cid:12)robability space (Ω,F,P), and d-dimen- k sionalcontinuousprocessesX,Xnk,k =1,2,...,definedonΩsuchthat e e e (1) ThelawsofXnk andXnk coincide; e e e (2) Xnk convergestoX uniformlyoneveryfinitetimeintervalP-a.s. t e t e e e ApproximationofsolutionsofSDEsdrivenbyfBm,underpathwiseuniqueness 307 3 Variationofsolutionswithrespecttoinitialconditions The purpose of this section is to ensure the continuousdependence of the solution withrespecttotheinitialconditionwhenthedriftbiscontinuousandbounded.Note that,inthecase ofordinarydifferentialequation,thecontinuityofthecoefficientis sufficienttoensurethisdependence. Next,wegiveatheoremthatwillbeessentialinestablishingthedesiredresult. Theorem 3.1. Let b be a continuous bounded function. Then, under the pathwise uniquenessforSDE(1),wehave 2 lim E sup X (x)−X (x ) =0. t t 0 x→x0 0≤t≤T h (cid:12) (cid:12) i (cid:12) (cid:12) BeforeweproceedtotheproofofTheorem3.1,westatethefollowingtechnical lemma. Lemma 3.2. Let Xn be the solution of (1) corresponding to the initial condition x . Then, for every p > 1 , there exists a positive constant C such that, for all n 2H p s,t∈[0,T], E Xn−Xn 2p ≤C |t−s|2pH. t s p Proof. Fixs<tin[0,T].(cid:2)W(cid:12) ehave (cid:12) (cid:3) (cid:12) (cid:12) 2p t Xn−Xn 2p ≤C b u,Xn du + BH −BH 2p . t s p u t s Duetothes(cid:12)(cid:12)tationarity(cid:12)(cid:12)oftheinc"r(cid:12)(cid:12)(cid:12)(cid:12)eZmsen(cid:0)tsandt(cid:1)hesc(cid:12)(cid:12)(cid:12)(cid:12)aling(cid:12)(cid:12)propertyof(cid:12)(cid:12)an#fBmandthe (cid:12) (cid:12) boundednessofb,wegetthat E Xn−Xn 2p ≤C |t−s|2p+|t−s|2pH t s p (cid:12) (cid:12) ≤Cp|(cid:2)t−s|2pH, (cid:3) (cid:12) (cid:12) whichfinishestheproof. LetusnowturntotheproofofTheorem3.1. Proof. Suppose that the result of the theorem is false. Then there exist a constant δ >0andasequencex convergingtox suchthat n 0 2 infE sup X (x )−X (x ) ≥δ. t n t 0 n 0≤t≤T h (cid:12) (cid:12) i LetXn(respectively,X)bethesol(cid:12)utionof(1)corresp(cid:12)ondingtotheinitialcondition x (respectively,x ).AccordingtoLemma3.2,thesequence(Xn,X,BH)satisfies n 0 conditions(i)and(ii)ofLemma2.5.Then,bySkorokhod’sselectiontheoremthere existasubsequence{n ,k ≥ 1},aprobabilityspace(Ω,F,P),andstochasticpro- k cesses(X,Y,BH),(Xk,Yk,BH,k),k ≥1,definedon(Ω,F,P)suchthat: e e e (α) foreeaechek ≥1,fthelfawseof(Xk,Yk,BH,k)and(Xenk,eX,eBH)coincide; f f e 308 O.ElBarrimi,Y.Ouknine (β) (Xk,Yk,BH,k) convergesto (X,Y,BH) uniformly on every finite time in- tervalP-a.s. e e e e e e Thankstoproperty(α),wehave,fork≥1andt>0, e 2 t E Xk−x − b s,Xk ds−BH,k =0. t k s t (cid:12)(cid:12) Z0 (cid:12)(cid:12) (cid:12)(cid:12)e (cid:0) e (cid:1) e (cid:12)(cid:12) Inotherwords,Xk sa(cid:12)tisfiesthefollowingSDE: (cid:12) t t e Xk =x + b s,Xk ds+BH,k. t k s t Z0 (cid:0) (cid:1) Similarly, e e e t Yk =x + b s,Yk ds+BH,k. t 0 s t Z0 (cid:0) (cid:1) Using(β),wededucetheat e e t t lim b s,Xk ds= b(s,X )ds s s k→∞Z0 Z0 (cid:0) (cid:1) and e e t t lim b s,Yk ds= b(s,Y )ds s s k→∞Z0 Z0 (cid:0) (cid:1) inprobabilityanduniformlyint∈[0e,T]. e Thus,theprocessesX andY satisfythesameSDEon(Ω,F,P)withthesame driving noise BH and the initial condition x . Then, by pathwise uniqueness, we t 0 concludethatX =Y foerallt∈e[0,T],P-a.s. e e e t t Ontheotheerhand,byuniformintegrabilitywehavethat e e e 2 δ ≤ liminfE max X (x )−X (x ) t n t 0 n 0≤t≤T = liminfEh max (cid:12)(cid:12)Xk−Yk 2 (cid:12)(cid:12) i t t k 0≤t≤T h (cid:12) (cid:12) i ≤ E maxe|X −Y(cid:12)e|2 , e (cid:12) t t 0≤t≤T h i whichisacontradiction.Theenthedesieredreesultfollows. 4 Thecaseofdiscontinuousdriftcoefficient In this section, we drop the continuity assumption on the drift coefficient and only assumethatbisbounded.Thegoalofthissectionistogeneratethesameresultasin Theorem3.1withoutthecontinuityassumption. Next, in order to use the fractional Girsanov theorem given in [8,Thm.2], we shouldfirstcheckthattheconditionsimposedinthelatteraresatisfiedinourcontext. Thiswillbedoneinthefollowinglemma. ApproximationofsolutionsofSDEsdrivenbyfBm,underpathwiseuniqueness 309 Lemma4.1. SupposethatXisasolutionofSDE(1),andletbbeaboundedfunction. Thentheprocessv =K−1( ·b(r,X )dr)enjoysthefollowingproperties: H 0 r (1) v ∈L2([0,T]), P-a.Rs.; s (2) E[exp{1 T |v |2ds}]<∞. 2 0 s Proof. (1)InligRhtof(3),wecanwrite |vs|= sH−21I012+−Hs12−H b(s,Xs) 1 s =(cid:12)(cid:12)Γ(1 −H)sH−21 (cid:12)(cid:12) (s−r)(cid:12)(cid:12)−(cid:12)(cid:12)12−Hr12−H b(r,Xr) dr 2 Z0 ≤ kbk∞Γ(11−H)sH−12 s(s−r)−21−H(cid:12)(cid:12)r12−Hdr(cid:12)(cid:12) 2 Z0 Γ(3 −H) = kbk∞ 2 s12−H Γ(2−2H) Γ(3 −H) ≤ kbk∞ 2 T12−H, Γ(2−2H) wherek·k denotesthenorminL∞([0,T];L∞(Rd)). ∞ Asaresult,wegetthat T |v |2ds<∞, P-a.s. s Z0 (2)Theseconditemisobtainedeasilybythefollowingestimate: 1 T 1 E exp |v |2ds ≤exp C T2(1−H)kbk2 , 2 s 2 H ∞ " ( Z0 )# (cid:26) (cid:27) whereC = Γ(32−H)2,whichfinishestheproof. H Γ(2−2H)2 Next, we will establish the following Krylov-type inequality that will play an essentialroleinthesequel. Lemma4.2. SupposethatX isasolutionofSDE(1).Then,thereexistsβ >1+dH suchthat,foranymeasurablenonnegativefunctiong :[0,T]×Rd 7→Rd,wehave + 1/β T T E g(t,X )dt≤M gβ(t,x)dxdt , (4) t Z0 Z0 ZRd ! whereM isaconstantdependingonlyonT,d,β,andH. Proof. LetW bead-dimensionalBrownianmotionsuchthat t BH = K (t,s)dW . t H s Z0 310 O.ElBarrimi,Y.Ouknine FortheprocessvintroducedinLemma4.1,letusdefineP by dP =exp − T v dW − 1 T v2dt b:=Z−1. dP t t 2 t T ( Z0 Z0 ) b Then,inlightofLemma4.1togetherwiththefractionalGirsanovtheorem[8,Thm.2], wecanconcludethatP isaprobabilitymeasureunderwhichtheprocessX−xisan fBm. Now,applyingHöblder’sinequality,wehave T T E g(t,X )dt=E Z g(t,X )dt t T t Z0 ( Z0 ) 1/ρ b T ≤C E Zα 1/α E gρ(t,X )dt , (5) T t ( Z0 ) (cid:8) (cid:2) (cid:3)(cid:9) b b where1/α+1/ρ=1,andC isapositiveconstantdependingonlyonT,α,andρ. From[2,Lemma4.3]wecanseethatE[Zα]satisfiesthefollowingproperty: T E ZTα ≤CH,d,bT kbk∞ <∞, (6) whereC isacontinuou(cid:2)sinc(cid:3)reasingfun(cid:0)ctiond(cid:1)ependingonlyonH,d,andT. H,d,T b Ontheotherhand,applyingagainHölder’sinequalitywith1/γ+1/γ′ = 1and γ >dH +1,weobtain T T E gρ(t,X )dt= gρ(t,y) 2πt2H −d/2exp−ky−xk2/2t2H dydt t Z0 Z0 ZRd (cid:0) (cid:1) 1/γ′ b ≤ T 2πt2H −dγ′/2exp−γ′ky−xk2/2t2H dydt Z0 ZRd ! (cid:0) (cid:1) 1/γ T × gργ(t,y)dydt . (7) Z0 ZRd ! Adirectcalculationgives 2πt2H −dγ′/2exp−γ′ky−xk2/2t2H dy =(2π)d/2−dγ′/2 γ′ −d/2t(1−γ′)dH. Rd Z (cid:0) (cid:1) (cid:0) (cid:1) Pluggingthisinto(7),weget 1/γ′ T T E gρ(t,X )dt≤ (2π)d/2−dγ′/2 γ′ −d/2t(1−γ′)dHdt t Z0 Z0 ! (cid:0) (cid:1) 1/γ b T × gργ(t,y)dydt Z0 ZRd ! 1/γ′ ≤ (2π)d/2−dγ′/2 γ′ −d/2 1/γ′ T t(1−γ′)dHdt Z0 ! (cid:0) (cid:0) (cid:1) (cid:1) ApproximationofsolutionsofSDEsdrivenbyfBm,underpathwiseuniqueness 311 1/γ T × gργ(t,y)dydt Z0 ZRd ! 1/γ T ≤C γ′,T,d,H gργ(t,y)dydt . Z0 ZRd ! (cid:0) (cid:1) Finally,combiningthiswith(5)and(6),wegetestimate(4)withβ =ργ.Theproof isnowcomplete. Nowweareabletostatethemainresultofthissection. Theorem4.3. IfthepathwiseuniquenessholdsforEq.(1),thenwithoutthecontinu- ityassumptiononthedriftcoefficient,theconclusionofTheorem3.1remainsvalid. Proof. TheproofissimilartothatofTheorem3.1.Theonlydifficultyistoshowthat t t lim b s,Xk ds= b(s,X )ds s s k→∞Z0 Z0 (cid:0) (cid:1) inprobability.Inotherwords,forǫ>e0,wewillshowtheat t limsupP b s,Xk −b(s,X ) ds >ǫ =0. (8) s s k→∞ "(cid:12)(cid:12)Z0 (cid:12)(cid:12) # Letusfirstdefine (cid:12)(cid:12) (cid:0) (cid:0) e (cid:1) e (cid:1) (cid:12)(cid:12) (cid:12) (cid:12) bδ(t,x)=δ−dφ(x/δ)∗b(t,x), where∗denotestheconvolutiononRd,andφisaninfinitelydifferentiablefunction withsupportintheunitballsuchthat φ(x)dx=1. ApplyingChebyshev’sinequality,weobtain R t P b s,Xk −b(s,X ) ds >ǫ s s "(cid:12)(cid:12)Z0 (cid:12)(cid:12) # ≤(cid:12)(cid:12)(cid:12) 1(cid:0)E(cid:0) et b(cid:1)s,Xk −e b(cid:1)(s,X(cid:12)(cid:12)(cid:12) ) 2ds ǫ2 s s "Z0 # (cid:12) (cid:0) (cid:1) (cid:12) ≤ 4 E (cid:12)t b se,Xk −bδ es,X(cid:12)k 2ds ǫ2 s s ( "Z0 # (cid:12) (cid:0) (cid:1) (cid:0) (cid:1)(cid:12) t (cid:12) e e (cid:12) +E bδ s,Xk −bδ(s,X ) 2ds s s "Z0 # (cid:12) (cid:0) (cid:1) (cid:12) t(cid:12) e e (cid:12) +E bδ(s,X )−b(s,X ) 2ds s s "Z0 #) (cid:12) (cid:12) 4 (cid:12) e e (cid:12) = (J +J +J ). ǫ2 1 2 3 Fromthecontinuityofbδ inxandfromtheconvergenceofXk toX uniformlyon s s everyfinitetimeintervalP a.s.itfollowsthatJ convergesto0ask →∞forevery 2 δ >0. e e e 312 O.ElBarrimi,Y.Ouknine On the otherhand,let θ : Rd → R be a smoothtruncationfunctionsuchthat + θ(z)=1intheunitballandθ(z)=0for|z|>1. ByapplyingLemma4.2weobtain t J =E θ Xk/R bδ s,Xk −b s,Xk 2ds 1 s s s Z0 t(cid:0) (cid:1)(cid:12) (cid:0) (cid:1) (cid:0) (cid:1)(cid:12) +E 1e−θ X(cid:12) k/R ebδ s,Xk e−b(cid:12)s,Xk 2ds s s s Z0 (cid:0) (cid:0) (cid:1)(cid:1)(cid:12)t (cid:0) (cid:1) (cid:0) (cid:1)(cid:12) ≤N bδ−b +e2CE (cid:12) 1−eθ Xk/R des, (cid:12) (9) β,R s Z0 (cid:13) (cid:13) (cid:0) (cid:0) (cid:1)(cid:1) whereN doesnotde(cid:13)pendon(cid:13)δ andk,andk·k deenotesthenorminLβ([0,T]× β,R B(0,R)). The last expressionin the right-handside of the last inequalitysatisfies the fol- lowingestimate: t E 1−θ Xk/R ds≤supP sup Xk >R . (10) s s Z0 (cid:0) (cid:0) (cid:1)(cid:1) k≥1 hs≤t(cid:12) (cid:12) i e (cid:12)e (cid:12) Butweknowthatsup E[sup |Xk|p]<∞forallp>1,andthus k≥1 s≤t s lim supPesup Xk >R =0. (11) s R→∞k≥1 s≤t h (cid:12) (cid:12) i Substitutingestimate(10)into(9),lettingδ(cid:12)e→(cid:12)0,andusing(11),wededucethatthe convergenceofthetermJ follows. 1 Finally,sinceestimate(10)alsoholdsforX,itsufficestousethesamearguments asbeforetoobtaintheconvergenceofthetermJ ,whichcompletestheproof. 3 e Acknowledgements We thankthereviewerforhisthoroughreviewandhighlyappreciatethe comments andsuggestions,whichsignificantlycontributedtoimprovingthequalityofthepaper. References [1] Bahlali,K.,Mezerdi,B.,Ouknine,Y.:Pathwiseuniquenessandapproximationofsolutions ofstochasticdifferentialequations.In:Azéma,J.,Yor,M.,Émery,M.,Ledoux,M.(eds.) Séminaire de Probabilités XXXII. Springer, Berlin (1998). MR1655150. doi:10.1007/ BFb0101757 [2] Banos,D.,Nilssen,T.,Proske,F.:StrongexistenceandhigherorderFréchetdifferentia- bilityof stochastic flows of fractional Brownian motion driven SDEwith singular drift. arXiv:1509.01154(2015) [3] Decreusefond, L.,Üstünel, A.S.:Stochasticanalysis of thefractional Brownian motion. PotentialAnal.10,177–214(1998). MR1677455.doi:10.1023/A:1008634027843 [4] Ikeda,N.,Watanabe,S.:StochasticDifferentialEquationsandDiffusionProcesses.North- Holland,Amsterdam(1981).MR1011252

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.