ModernStochastics:TheoryandApplications3(2016)303–313 DOI:10.15559/16-VMSTA69 7 1 0 2 n a J Approximation of solutions of SDEs driven by 5 a fractional Brownian motion, under pathwise ] R uniqueness P . h t OussamaElBarrimia,1,∗,YoussefOukninea,b a m aCadiAyyadUniversity,FacultyofSciencesSemlalia, [ Av.MyAbdellah,2390,Marrakesh,Morocco 1 bHassanIIAcademyofSciencesandTechnologyRabat,Morocco v 4 [email protected](O.ElBarrimi),[email protected](Y.Ouknine) 4 2 Received:29July2016,Revised:12December2016,Accepted:13December2016, 1 Publishedonline:20December2016 0 . Abstract Ouraiminthispaperistoestablishsomestrongstabilitypropertiesofasolution 1 of a stochastic differential equation driven by a fractional Brownian motion for which the 0 pathwiseuniquenessholds.TheresultsareobtainedusingSkorokhod’sselectiontheorem. 7 1 Keywords FractionalBrownianmotion,Stochasticdifferentialequations : v 2010MSC 60G15,60G22 i X r a 1 Introduction Considera fractionalBrownianmotion(fBm), a self-similar Gaussian processwith stationary increments. It was introduced by Kolmogorov [5] and studied by Man- delbrotand Van Ness [6]. The fBm with Hurst parameter H ∈ (0,1) is a centered Gaussianprocesswithcovariancefunction 1 R (t,s)=E BHBH = t2H +s2H −|t−s|2H . H t s 2 (cid:0) (cid:1) (cid:0) (cid:1) ∗Correspondingauthor. 1Thisauthorissupported bytheCNRST“Centre National pourlaRecherche Scientifique etTech- nique”,grantNo.I003/034,Rabat,Morocco. ©2016TheAuthor(s).PublishedbyVTeX.OpenaccessarticleundertheCCBYlicense. www.i-journals.org/vmsta 304 O.ElBarrimi,Y.Ouknine If H = 1/2, then the process B1/2 is a standard Brownian motion. When H 6= 1, 2 BH isneitherasemimartingalenoraMarkovprocess,sothatmanyofthetechniques employedinstochasticanalysisarenotavailableforanfBm.Theself-similarityand stationarityofincrementsmakethefBmanappropriatemodelformanyapplications indiversefieldsfrombiologytofinance.Wereferto[7]fordetailsonthesenotions. Considerthefollowingstochasticdifferentialequation(SDE) dX =b(t,X )dt+dBH, t t t (1) (X0 =x∈Rd, where b : [0,T]×Rd → Rd is a measurablefunction,andBH is a d-dimensional fBm with HurstparameterH < 1/2whose componentsare one-dimensionalinde- pendentfBmsdefinedonaprobabilityspace(Ω,F,{F } ,P),wherethefiltra- t t∈[0,T] tion{F } isgeneratedbyBH,t∈[0,T],augmentedbytheP-nullsets.Ithas t t∈[0,T] t beenprovedin[2]thatifbsatisfiestheassumption b∈L1,∞ :=L∞ [0,T];L1 Rd ∩L∞ Rd , (2) ∞ forH < 1 ,thenEq.(1)hasa(cid:0)uniquestr(cid:0)ong(cid:1)solutio(cid:0)n,w(cid:1)h(cid:1)ichwillbeassumed 2(3d−1) throughoutthispaper. NoticethatifthedriftcoefficientisLipschitzcontinuous,thenEq.(1)hasaunique strongsolution,whichis continuouswithrespectto theinitialcondition.Moreover, thesolutioncanbeconstructedusingvariousnumericalschemes. Our purpose in this paper is to establish some stability results under the path- wiseuniquenessofsolutionsandunderweakregularityconditionsonthedriftcoef- ficientb.Wementionthataconsiderableresultinthisdirectionhasbeenestablished in[1]whenanfBmisreplacedbyastandardBrownianmotion. The paper is organized as follows. In Section 2, we introduce some properties, notation,definitions,andpreliminaryresults.Section3isdevotedtothestudyofthe variationof solutionwith respectto the initial data. In the last section, we dropthe continuityassumptiononthedriftandtrytoobtainthesameresultasinSection3. 2 Preliminaries Inthissection,wegivesomepropertiesofanfBm,definitions,andsometoolsused intheproofs. ForanyH <1/2,letusdefinethesquare-integrablekernel KH(t,s)=cH t H−12 − H − 1 s12−H t(u−s)H−21uH−32 du , t>s, s 2 "(cid:18) (cid:19) (cid:18) (cid:19) Zs # wherec =[ 2H ]1/2,t>s. H (1−2H)β(1−2H,H+1)) 2 Notethat H−1 ∂KH(t,s)=cH H − 1 t 2(t−s)H−32. ∂t 2 s (cid:18) (cid:19)(cid:18) (cid:19) ApproximationofsolutionsofSDEsdrivenbyfBm,underpathwiseuniqueness 305 Let BH = {BH, t ∈ [0,T]} be an fBm defined on (Ω,F,{F } ,P). We t t t∈[0,T] denotebyζ thesetofstepfunctionson[0,T].LetHbetheHilbertspacedefinedas theclosureofζ withrespecttothescalarproduct h1 ,1 i =R (t,s). [0,t] [0,s] H H Themapping1 →BH canbeextendedtoanisometrybetweenHandtheGaus- [0,t] t sian subspace of L2(Ω) associated with BH, and such an isometry is denoted by ϕ→BH(ϕ). NowweintroducethelinearoperatorK∗ fromζ toL2([0,T])definedby H b ∂K K∗ϕ (s)=K (b,s)ϕ(s)+ ϕ(t)−ϕ(s) H(t,s)dt. H H ∂t Zs (cid:0) (cid:1) (cid:0) (cid:1) TheoperatorK∗ isanisometrybetweenζ andL2([0,T]),whichcanbeextendedto H theHilbertspaceH. DefinetheprocessW ={W ,t∈[0,T]}by t W =BH K∗ −11 . t H [0,t] ThenW isaBrownianmotion;moreov(cid:0)e(cid:0)r,BH(cid:1)hasthe(cid:1)integralrepresentation t BH = K (t,s)dW(s). t H Z0 WeneedalsotodefineanisomorphismK fromL2([0,T])ontoIH+12(L2)associ- H 0+ atedwiththekernelK (t,s)intermsofthefractionalintegralsasfollows: H (KHϕ)(s)=I02+Hs21−HI012+−HsH−21ϕ, ϕ∈L2 [0,T] . Note that, for ϕ ∈ L2([0,T]), Iα is the left fractionalRiema(cid:0)nn-Lio(cid:1)uville integral 0+ operatoroforderαdefinedby 1 x Iα ϕ(x)= (x−y)α−1ϕ(y)dy, 0+ Γ(α) Z0 whereΓ isthegammafunction(see[3]fordetails). TheinverseofK isgivenby H KH−1ϕ (s)=s21−HD012+−HsH−21D02+Hϕ(s), ϕ∈I0H++12 L2 , where for(cid:0)ϕ ∈ I(cid:1)H+21(L2), Dα is the left-sided Riemann Liouvil(cid:0)le d(cid:1)erivative of 0+ 0+ orderαdefinedby 1 d x ϕ(y) Dα ϕ(x)= dy. 0+ Γ(1−α)dx (x−y)α Z0 Ifϕisabsolutelycontinuous(see[8]),then K−1ϕ (s)=sH−21I12−Hs21−Hϕ′(s). (3) H 0+ (cid:0) (cid:1) 306 O.ElBarrimi,Y.Ouknine Definition2.1. Onagivenprobabilityspace(Ω,F,P),aprocessXiscalledastrong solutionto(1)if (1) Xis{F } adapted,where{F } isthefiltrationgeneratedbyBH,t∈ t t∈[0,T] t t∈[0,T] t [0,T]; (2) X satisfies(1). Definition2.2. Asextuple(Ω,F,{F } ,P,X,BH)iscalleda weaksolution t t∈[0,T] to(1)if (1) (Ω,F,P) is a probabilityspace equipped with the filtration {F } that t t∈[0,T] satisfiestheusualconditions; (2) X isan{F } -adaptedprocess,andBH isan{F } -fBm; t t∈[0,T] t t∈[0,T] (3) X andBH satisfy(1). Definition 2.3 (Pathwise uniqueness). We say that pathwise uniqueness holds for Eq.(1)ifwhenever(X,BH)and(X,BH)aretwoweaksolutionsofEq.(1)defined on the same probability space (Ω,F,(F ) ,P), then X and X are indistin- t t∈[0,T] guishable. e Themaintoolusedinthe proofsisSkorokhod’sselectiontheoreme givenbythe followinglemma. Lemma 2.4. ([4], p. 9) Let (S,ρ) be a complete separable metric space, and let P, P , n = 1,2,..., be probabilitymeasureson (S,B(S)) suchthatP converges n n weakly to P asn → ∞. Then,ona probabilityspace (Ω,F,P), we canconstruct S-valuedrandomvariablesX,X ,n=1,2,...,suchthat: n e e e (i) P = PXn,n = 1,2,...,andP = PX,wherePXn andPX arerespectively n thelawsofX andX; n e e e e (ii) X convergestoX P-a.s. n We will also make use of the following result, which gives a criterion for the e tightnessofsequencesoflawsassociatedwithcontinuousprocesses. Lemma 2.5. ([4], p. 18) Let {Xn, t ∈ [0,T]}, n = 1,2,..., be a sequence of d- t dimensionalcontinuousprocessessatisfyingthefollowingtwoconditions: (i) ThereexistpositiveconstantsM andγ suchthatE[|Xn(0)|γ] ≤ M forevery n=1,2,...; (ii) thereexistpositiveconstantsα,β,M ,k =1,2,...,suchthat,foreveryn≥1 k andallt,s∈[0,k],k =1,2,..., E Xn−Xn α ≤M |t−s|1+β. t s k (cid:2)(cid:12) (cid:12) (cid:3) Then, there exist a subsequenc(cid:12)e(n ), a p(cid:12)robability space (Ω,F,P), and d-dimen- k sionalcontinuousprocessesX,Xnk,k =1,2,...,definedonΩsuchthat e e e (1) ThelawsofXnk andXnk coincide; e e e (2) Xnk convergestoX uniformlyoneveryfinitetimeintervalP-a.s. t e t e e e ApproximationofsolutionsofSDEsdrivenbyfBm,underpathwiseuniqueness 307 3 Variationofsolutionswithrespecttoinitialconditions The purpose of this section is to ensure the continuousdependence of the solution withrespecttotheinitialconditionwhenthedriftbiscontinuousandbounded.Note that,inthecase ofordinarydifferentialequation,thecontinuityofthecoefficientis sufficienttoensurethisdependence. Next,wegiveatheoremthatwillbeessentialinestablishingthedesiredresult. Theorem 3.1. Let b be a continuous bounded function. Then, under the pathwise uniquenessforSDE(1),wehave 2 lim E sup X (x)−X (x ) =0. t t 0 x→x0 0≤t≤T h (cid:12) (cid:12) i (cid:12) (cid:12) BeforeweproceedtotheproofofTheorem3.1,westatethefollowingtechnical lemma. Lemma 3.2. Let Xn be the solution of (1) corresponding to the initial condition x . Then, for every p > 1 , there exists a positive constant C such that, for all n 2H p s,t∈[0,T], E Xn−Xn 2p ≤C |t−s|2pH. t s p Proof. Fixs<tin[0,T].(cid:2)W(cid:12) ehave (cid:12) (cid:3) (cid:12) (cid:12) 2p t Xn−Xn 2p ≤C b u,Xn du + BH −BH 2p . t s p u t s Duetothes(cid:12)(cid:12)tationarity(cid:12)(cid:12)oftheinc"r(cid:12)(cid:12)(cid:12)(cid:12)eZmsen(cid:0)tsandt(cid:1)hesc(cid:12)(cid:12)(cid:12)(cid:12)aling(cid:12)(cid:12)propertyof(cid:12)(cid:12)an#fBmandthe (cid:12) (cid:12) boundednessofb,wegetthat E Xn−Xn 2p ≤C |t−s|2p+|t−s|2pH t s p (cid:12) (cid:12) ≤Cp|(cid:2)t−s|2pH, (cid:3) (cid:12) (cid:12) whichfinishestheproof. LetusnowturntotheproofofTheorem3.1. Proof. Suppose that the result of the theorem is false. Then there exist a constant δ >0andasequencex convergingtox suchthat n 0 2 infE sup X (x )−X (x ) ≥δ. t n t 0 n 0≤t≤T h (cid:12) (cid:12) i LetXn(respectively,X)bethesol(cid:12)utionof(1)corresp(cid:12)ondingtotheinitialcondition x (respectively,x ).AccordingtoLemma3.2,thesequence(Xn,X,BH)satisfies n 0 conditions(i)and(ii)ofLemma2.5.Then,bySkorokhod’sselectiontheoremthere existasubsequence{n ,k ≥ 1},aprobabilityspace(Ω,F,P),andstochasticpro- k cesses(X,Y,BH),(Xk,Yk,BH,k),k ≥1,definedon(Ω,F,P)suchthat: e e e (α) foreeaechek ≥1,fthelfawseof(Xk,Yk,BH,k)and(Xenk,eX,eBH)coincide; f f e 308 O.ElBarrimi,Y.Ouknine (β) (Xk,Yk,BH,k) convergesto (X,Y,BH) uniformly on every finite time in- tervalP-a.s. e e e e e e Thankstoproperty(α),wehave,fork≥1andt>0, e 2 t E Xk−x − b s,Xk ds−BH,k =0. t k s t (cid:12)(cid:12) Z0 (cid:12)(cid:12) (cid:12)(cid:12)e (cid:0) e (cid:1) e (cid:12)(cid:12) Inotherwords,Xk sa(cid:12)tisfiesthefollowingSDE: (cid:12) t t e Xk =x + b s,Xk ds+BH,k. t k s t Z0 (cid:0) (cid:1) Similarly, e e e t Yk =x + b s,Yk ds+BH,k. t 0 s t Z0 (cid:0) (cid:1) Using(β),wededucetheat e e t t lim b s,Xk ds= b(s,X )ds s s k→∞Z0 Z0 (cid:0) (cid:1) and e e t t lim b s,Yk ds= b(s,Y )ds s s k→∞Z0 Z0 (cid:0) (cid:1) inprobabilityanduniformlyint∈[0e,T]. e Thus,theprocessesX andY satisfythesameSDEon(Ω,F,P)withthesame driving noise BH and the initial condition x . Then, by pathwise uniqueness, we t 0 concludethatX =Y foerallt∈e[0,T],P-a.s. e e e t t Ontheotheerhand,byuniformintegrabilitywehavethat e e e 2 δ ≤ liminfE max X (x )−X (x ) t n t 0 n 0≤t≤T = liminfEh max (cid:12)(cid:12)Xk−Yk 2 (cid:12)(cid:12) i t t k 0≤t≤T h (cid:12) (cid:12) i ≤ E maxe|X −Y(cid:12)e|2 , e (cid:12) t t 0≤t≤T h i whichisacontradiction.Theenthedesieredreesultfollows. 4 Thecaseofdiscontinuousdriftcoefficient In this section, we drop the continuity assumption on the drift coefficient and only assumethatbisbounded.Thegoalofthissectionistogeneratethesameresultasin Theorem3.1withoutthecontinuityassumption. Next, in order to use the fractional Girsanov theorem given in [8,Thm.2], we shouldfirstcheckthattheconditionsimposedinthelatteraresatisfiedinourcontext. Thiswillbedoneinthefollowinglemma. ApproximationofsolutionsofSDEsdrivenbyfBm,underpathwiseuniqueness 309 Lemma4.1. SupposethatXisasolutionofSDE(1),andletbbeaboundedfunction. Thentheprocessv =K−1( ·b(r,X )dr)enjoysthefollowingproperties: H 0 r (1) v ∈L2([0,T]), P-a.Rs.; s (2) E[exp{1 T |v |2ds}]<∞. 2 0 s Proof. (1)InligRhtof(3),wecanwrite |vs|= sH−21I012+−Hs12−H b(s,Xs) 1 s =(cid:12)(cid:12)Γ(1 −H)sH−21 (cid:12)(cid:12) (s−r)(cid:12)(cid:12)−(cid:12)(cid:12)12−Hr12−H b(r,Xr) dr 2 Z0 ≤ kbk∞Γ(11−H)sH−12 s(s−r)−21−H(cid:12)(cid:12)r12−Hdr(cid:12)(cid:12) 2 Z0 Γ(3 −H) = kbk∞ 2 s12−H Γ(2−2H) Γ(3 −H) ≤ kbk∞ 2 T12−H, Γ(2−2H) wherek·k denotesthenorminL∞([0,T];L∞(Rd)). ∞ Asaresult,wegetthat T |v |2ds<∞, P-a.s. s Z0 (2)Theseconditemisobtainedeasilybythefollowingestimate: 1 T 1 E exp |v |2ds ≤exp C T2(1−H)kbk2 , 2 s 2 H ∞ " ( Z0 )# (cid:26) (cid:27) whereC = Γ(32−H)2,whichfinishestheproof. H Γ(2−2H)2 Next, we will establish the following Krylov-type inequality that will play an essentialroleinthesequel. Lemma4.2. SupposethatX isasolutionofSDE(1).Then,thereexistsβ >1+dH suchthat,foranymeasurablenonnegativefunctiong :[0,T]×Rd 7→Rd,wehave + 1/β T T E g(t,X )dt≤M gβ(t,x)dxdt , (4) t Z0 Z0 ZRd ! whereM isaconstantdependingonlyonT,d,β,andH. Proof. LetW bead-dimensionalBrownianmotionsuchthat t BH = K (t,s)dW . t H s Z0 310 O.ElBarrimi,Y.Ouknine FortheprocessvintroducedinLemma4.1,letusdefineP by dP =exp − T v dW − 1 T v2dt b:=Z−1. dP t t 2 t T ( Z0 Z0 ) b Then,inlightofLemma4.1togetherwiththefractionalGirsanovtheorem[8,Thm.2], wecanconcludethatP isaprobabilitymeasureunderwhichtheprocessX−xisan fBm. Now,applyingHöblder’sinequality,wehave T T E g(t,X )dt=E Z g(t,X )dt t T t Z0 ( Z0 ) 1/ρ b T ≤C E Zα 1/α E gρ(t,X )dt , (5) T t ( Z0 ) (cid:8) (cid:2) (cid:3)(cid:9) b b where1/α+1/ρ=1,andC isapositiveconstantdependingonlyonT,α,andρ. From[2,Lemma4.3]wecanseethatE[Zα]satisfiesthefollowingproperty: T E ZTα ≤CH,d,bT kbk∞ <∞, (6) whereC isacontinuou(cid:2)sinc(cid:3)reasingfun(cid:0)ctiond(cid:1)ependingonlyonH,d,andT. H,d,T b Ontheotherhand,applyingagainHölder’sinequalitywith1/γ+1/γ′ = 1and γ >dH +1,weobtain T T E gρ(t,X )dt= gρ(t,y) 2πt2H −d/2exp−ky−xk2/2t2H dydt t Z0 Z0 ZRd (cid:0) (cid:1) 1/γ′ b ≤ T 2πt2H −dγ′/2exp−γ′ky−xk2/2t2H dydt Z0 ZRd ! (cid:0) (cid:1) 1/γ T × gργ(t,y)dydt . (7) Z0 ZRd ! Adirectcalculationgives 2πt2H −dγ′/2exp−γ′ky−xk2/2t2H dy =(2π)d/2−dγ′/2 γ′ −d/2t(1−γ′)dH. Rd Z (cid:0) (cid:1) (cid:0) (cid:1) Pluggingthisinto(7),weget 1/γ′ T T E gρ(t,X )dt≤ (2π)d/2−dγ′/2 γ′ −d/2t(1−γ′)dHdt t Z0 Z0 ! (cid:0) (cid:1) 1/γ b T × gργ(t,y)dydt Z0 ZRd ! 1/γ′ ≤ (2π)d/2−dγ′/2 γ′ −d/2 1/γ′ T t(1−γ′)dHdt Z0 ! (cid:0) (cid:0) (cid:1) (cid:1) ApproximationofsolutionsofSDEsdrivenbyfBm,underpathwiseuniqueness 311 1/γ T × gργ(t,y)dydt Z0 ZRd ! 1/γ T ≤C γ′,T,d,H gργ(t,y)dydt . Z0 ZRd ! (cid:0) (cid:1) Finally,combiningthiswith(5)and(6),wegetestimate(4)withβ =ργ.Theproof isnowcomplete. Nowweareabletostatethemainresultofthissection. Theorem4.3. IfthepathwiseuniquenessholdsforEq.(1),thenwithoutthecontinu- ityassumptiononthedriftcoefficient,theconclusionofTheorem3.1remainsvalid. Proof. TheproofissimilartothatofTheorem3.1.Theonlydifficultyistoshowthat t t lim b s,Xk ds= b(s,X )ds s s k→∞Z0 Z0 (cid:0) (cid:1) inprobability.Inotherwords,forǫ>e0,wewillshowtheat t limsupP b s,Xk −b(s,X ) ds >ǫ =0. (8) s s k→∞ "(cid:12)(cid:12)Z0 (cid:12)(cid:12) # Letusfirstdefine (cid:12)(cid:12) (cid:0) (cid:0) e (cid:1) e (cid:1) (cid:12)(cid:12) (cid:12) (cid:12) bδ(t,x)=δ−dφ(x/δ)∗b(t,x), where∗denotestheconvolutiononRd,andφisaninfinitelydifferentiablefunction withsupportintheunitballsuchthat φ(x)dx=1. ApplyingChebyshev’sinequality,weobtain R t P b s,Xk −b(s,X ) ds >ǫ s s "(cid:12)(cid:12)Z0 (cid:12)(cid:12) # ≤(cid:12)(cid:12)(cid:12) 1(cid:0)E(cid:0) et b(cid:1)s,Xk −e b(cid:1)(s,X(cid:12)(cid:12)(cid:12) ) 2ds ǫ2 s s "Z0 # (cid:12) (cid:0) (cid:1) (cid:12) ≤ 4 E (cid:12)t b se,Xk −bδ es,X(cid:12)k 2ds ǫ2 s s ( "Z0 # (cid:12) (cid:0) (cid:1) (cid:0) (cid:1)(cid:12) t (cid:12) e e (cid:12) +E bδ s,Xk −bδ(s,X ) 2ds s s "Z0 # (cid:12) (cid:0) (cid:1) (cid:12) t(cid:12) e e (cid:12) +E bδ(s,X )−b(s,X ) 2ds s s "Z0 #) (cid:12) (cid:12) 4 (cid:12) e e (cid:12) = (J +J +J ). ǫ2 1 2 3 Fromthecontinuityofbδ inxandfromtheconvergenceofXk toX uniformlyon s s everyfinitetimeintervalP a.s.itfollowsthatJ convergesto0ask →∞forevery 2 δ >0. e e e 312 O.ElBarrimi,Y.Ouknine On the otherhand,let θ : Rd → R be a smoothtruncationfunctionsuchthat + θ(z)=1intheunitballandθ(z)=0for|z|>1. ByapplyingLemma4.2weobtain t J =E θ Xk/R bδ s,Xk −b s,Xk 2ds 1 s s s Z0 t(cid:0) (cid:1)(cid:12) (cid:0) (cid:1) (cid:0) (cid:1)(cid:12) +E 1e−θ X(cid:12) k/R ebδ s,Xk e−b(cid:12)s,Xk 2ds s s s Z0 (cid:0) (cid:0) (cid:1)(cid:1)(cid:12)t (cid:0) (cid:1) (cid:0) (cid:1)(cid:12) ≤N bδ−b +e2CE (cid:12) 1−eθ Xk/R des, (cid:12) (9) β,R s Z0 (cid:13) (cid:13) (cid:0) (cid:0) (cid:1)(cid:1) whereN doesnotde(cid:13)pendon(cid:13)δ andk,andk·k deenotesthenorminLβ([0,T]× β,R B(0,R)). The last expressionin the right-handside of the last inequalitysatisfies the fol- lowingestimate: t E 1−θ Xk/R ds≤supP sup Xk >R . (10) s s Z0 (cid:0) (cid:0) (cid:1)(cid:1) k≥1 hs≤t(cid:12) (cid:12) i e (cid:12)e (cid:12) Butweknowthatsup E[sup |Xk|p]<∞forallp>1,andthus k≥1 s≤t s lim supPesup Xk >R =0. (11) s R→∞k≥1 s≤t h (cid:12) (cid:12) i Substitutingestimate(10)into(9),lettingδ(cid:12)e→(cid:12)0,andusing(11),wededucethatthe convergenceofthetermJ follows. 1 Finally,sinceestimate(10)alsoholdsforX,itsufficestousethesamearguments asbeforetoobtaintheconvergenceofthetermJ ,whichcompletestheproof. 3 e Acknowledgements We thankthereviewerforhisthoroughreviewandhighlyappreciatethe comments andsuggestions,whichsignificantlycontributedtoimprovingthequalityofthepaper. References [1] Bahlali,K.,Mezerdi,B.,Ouknine,Y.:Pathwiseuniquenessandapproximationofsolutions ofstochasticdifferentialequations.In:Azéma,J.,Yor,M.,Émery,M.,Ledoux,M.(eds.) Séminaire de Probabilités XXXII. Springer, Berlin (1998). MR1655150. doi:10.1007/ BFb0101757 [2] Banos,D.,Nilssen,T.,Proske,F.:StrongexistenceandhigherorderFréchetdifferentia- bilityof stochastic flows of fractional Brownian motion driven SDEwith singular drift. arXiv:1509.01154(2015) [3] Decreusefond, L.,Üstünel, A.S.:Stochasticanalysis of thefractional Brownian motion. PotentialAnal.10,177–214(1998). MR1677455.doi:10.1023/A:1008634027843 [4] Ikeda,N.,Watanabe,S.:StochasticDifferentialEquationsandDiffusionProcesses.North- Holland,Amsterdam(1981).MR1011252