ebook img

Approximation of Multiobjective Optimization - Ilias Diakonikolas PDF

188 Pages·2011·1.55 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Approximation of Multiobjective Optimization - Ilias Diakonikolas

Approximation of Multiobjective Optimization Problems Ilias Diakonikolas Submittedinpartialfulfillmentofthe requirementsforthedegree ofDoctorofPhilosophy intheGraduateSchoolofArtsandSciences COLUMBIA UNIVERSITY 2011 (cid:13)c 2011 IliasDiakonikolas AllRightsReserved ABSTRACT Approximation of Multiobjective Optimization Problems Ilias Diakonikolas We study optimization problems with multiple objectives. Such problems are pervasive across manydiversedisciplines–ineconomics,engineering,healthcare,biology,tonamebutafew–and heuristic approaches to solve them have already been deployed in several areas, in both academia andindustry. Hence,thereisarealneedforarigorousinvestigationoftherelevantquestions. Insuchproblemsweareinterestednotinasingleoptimalsolution,butinthetradeoffbetween the different objectives. This is captured by the tradeoff or Pareto curve, the set of all feasible solutionswhosevectorofthevariousobjectivesisnotdominatedbyanyothersolution. Typically, we have a small number of objectives and we wish to plot the tradeoff curve to get a sense of the designspace. Unfortunately,typicallythetradeoffcurvehasexponentialsizefordiscreteoptimiza- tionproblemsevenfortwoobjectives(andistypicallyinfiniteforcontinuousproblems). Hence, a natural goal in this setting is, given an instance of a multiobjective problem, to efficiently obtain a “good”approximationtotheentiresolutionspacewith“few”solutions. Thishasbeentheunderly- ing goal in much of the research in the multiobjective area, with many heuristics proposed for this purpose,typicallyhoweverwithoutanyperformanceguaranteesorcomplexityanalysis. WedevelopefficientalgorithmsforthesuccinctapproximationoftheParetosetforalargeclass ofmultiobjectiveproblems. First,weinvestigatetheproblemofcomputingaminimumsetofsolu- tionsthatapproximateswithinaspecifiedaccuracytheParetocurveofamultiobjectiveoptimization problem. Weprovideapproximationalgorithmswithtightperformanceguaranteesforbi-objective problems and make progress for the more challenging case of three and more objectives. Subse- quently, we propose and study the notion of the approximate convex Pareto set; a novel notion of approximationtotheParetoset,astheappropriateonefortheconvexsetting. Wecharacterizewhen suchanapproximationcanbeefficientlyconstructedandinvestigatetheproblemofcomputingmin- imum size approximate convex Pareto sets, both for discrete and convex problems. Next, we turn to the problem of approximating the Pareto set as efficiently as possible. To this end, we analyze the Chord algorithm, a popular, simple method for the succinct approximation of curves, which is widely used, under different names, in a variety of areas, such as, multiobjective and parametric optimization,computationalgeometry,andgraphics. Table of Contents 1 Introduction 1 1.1 ApproximationoftheParetoSet . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 ObjectiveSpace: ConvexorDiscrete? . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 MinimizingtheComputationalEffort . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 OrganizationoftheDissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2 Background 13 2.1 BasicDefinitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1.1 MultiobjectiveOptimizationProblems . . . . . . . . . . . . . . . . . . . . 13 2.1.2 ParetoSetandApproximations . . . . . . . . . . . . . . . . . . . . . . . 14 2.2 PreviousWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3 RelatedWork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3 SuccinctApproximateParetoSets 20 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2 TwoObjectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.2 LowerBound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.3 TwoObjectivesAlgorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3 dObjectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.3.1 Approximationoftheoptimal(cid:15)-Paretoset . . . . . . . . . . . . . . . . . . 45 3.3.2 TheDualProblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 i 3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4 ApproximateConvexParetoSets 61 4.1 EfficientComputability: TheCombProblem . . . . . . . . . . . . . . . . . . . . 61 4.2 ProofofTheorem4.1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5 SuccinctApproximateConvexParetoSets 71 5.1 ChapterOrganization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.2 TwoObjectives–ExplicitlyGivenPoints . . . . . . . . . . . . . . . . . . . . . . 72 5.2.1 Convex(Objective)Space–problemQ : . . . . . . . . . . . . . . . . . . 73 C 5.2.2 Discrete(Objective)Space–problemQ . . . . . . . . . . . . . . . . . . 82 D 5.2.3 Bestk solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5.3 TwoObjectives–GeneralResults . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.3.1 ExactCombroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.3.2 ApproximateCombroutine . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.4 dObjectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.4.1 ExplicitlyGivenPoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 5.4.2 ApproximateCombRoutine . . . . . . . . . . . . . . . . . . . . . . . . . 120 6 TheChordAlgorithm 123 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.2 ModelandStatementofResults . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.2.1 Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.2.2 TheChordAlgorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 6.2.3 OurResults. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.3 Worst–CaseAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.3.1 LowerBounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.3.2 UpperBound. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 6.4 AverageCaseAnalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 6.4.1 UpperBounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 ii 6.4.2 LowerBounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 6.5 ConclusionsandOpenProblems . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 7 ConclusionsandOpenProblems 167 iii List of Figures 3.1 Apolynomialtimegenericalgorithmcannotdetermineifpisasolutionofthegiven instance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2 GraphsinthereductionofTheorem3.2.2. . . . . . . . . . . . . . . . . . . . . . . 26 3.3 ParetosetforgraphH ofTheorem3.2.2.. . . . . . . . . . . . . . . . . . . . . . . 29 3.4 Illustration of the worst-case performance of the greedy approach. There are no solutionpointsintheshadedregion. . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.5 Schematic performance of the factor-2 algorithm. The scale is logarithmic in both dimensions. Therearenosolutionsintheshadedregion. . . . . . . . . . . . . . . 39 4.1 Illustration of Comb (w) routine for two minimization objectives. The shaded re- δ gion represents the (set of solution points in the) objective space. There exist no solutionpointsbelowthedottedline. . . . . . . . . . . . . . . . . . . . . . . . . . 62 4.2 IllustrationofComb (λ)routine. Theshadedregionrepresentsthe(setofsolution δ pointsinthe)objectivespaceI. Thereexistnosolutionpointsbelowthedottedline. 64 5.1 Schematicperformanceofthei-thiterationofalgorithm CONVEX-2D. . . . . . . 78 5.2 Illustrationoffactor2lowerboundforexactComb(k = 2). . . . . . . . . . . . . 92 5.3 Illustrationoffactor2lowerboundforgenericalgorithmswithapproximateGAP . 102 δ 5.4 Illustration of (the proof of) Lemma 5.3.10. The figure clearly indicates that the pairs of points (α,α(cid:48)) and (β,β(cid:48)) are (cid:15)(cid:48)-visible from each other with respect to LE(cid:48) . Theboldgraysegmentscorrespondto(1+(cid:15)(cid:48))·LE(αα(cid:48))and(1+(cid:15)(cid:48))·LE(ββ(cid:48)).105 (cid:15)(cid:48) iv 5.5 An illustration of the set system F. It is assumed for simplicity that A = CP(A). The shaded region represents the hyperplane class that lies above the set of points {p ,p }. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 2 3 6.1 IllustrationoftheChordalgorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.2 LowerboundforChord. Thefiguredepictsthecasej = k = 4. . . . . . . . . . . 133 6.3 IllustrationofdefinitionsforcounterexampleinFigure6.2. . . . . . . . . . . . . . 134 6.4 Illustrationoftherelationbetweenthehorizontalandtheratiodistance. . . . . . . 138 6.5 Generallowerboundforhorizontaldistance. . . . . . . . . . . . . . . . . . . . . . 142 6.6 AreashrinkagepropertyoftheChordalgorithm. . . . . . . . . . . . . . . . . . . . 144 6.7 OntheChoiceofParameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6.8 AveragecaseareashrinkagepropertyoftheChordalgorithm. . . . . . . . . . . . . 154 v List of Tables 3.1 Pseudo-codeforthegreedyalgorithm. . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2 Pseudo-codeforfactor-2algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.3 AlgorithmfortheDualProblem. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.1 Generic oblivious algorithm for the construction of a polynomial size (cid:15)-convex Paretoset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5.1 Optimalalgorithmforexplicittwodimensionalconvexcase. . . . . . . . . . . . . 77 5.2 Optimalalgorithmforexplicittwo-dimensionaldiscretecase. . . . . . . . . . . . . 85 5.3 AlgorithmfortwodimensionaldiscreteconvexParetoapproximation(exactComb). 94 6.1 Pseudo-codeforChordalgorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 127 vi

Description:
Approximation of Multiobjective Optimization Problems. Ilias Diakonikolas. Submitted in partial fulfillment of the requirements for the degree of Doctor of
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.