ebook img

Approximation Methods in Probability Theory PDF

283 Pages·2016·1.33 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Approximation Methods in Probability Theory

Universitext Vydas Čekanavičius Approximation Methods in Probability Theory Universitext Universitext SeriesEditors SheldonAxler SanFranciscoStateUniversity VincenzoCapasso UniversitàdegliStudidiMilano CarlesCasacuberta UniversitatdeBarcelona AngusMacIntyre QueenMary,UniversityofLondon KennethRibet UniversityofCalifornia,Berkeley ClaudeSabbah CNRS,Ecolepolytechnique,France EndreSüli UniversityofOxford WojborA.Woyczyn´ski CaseWesternReserveUniversity,Cleveland,OH Universitext is a series of textbooksthat presents material from a wide variety of mathematicaldisciplinesatmaster’slevelandbeyond.Thebooks,oftenwellclass- testedbytheirauthor,mayhaveaninformal,personalevenexperimentalapproach to their subject matter. Some of the most successful and established books in the series have evolved through several editions, always following the evolution of teachingcurricula,toverypolishedtexts. Thus as research topics trickle down into graduate-level teaching, first textbooks writtenfornew,cutting-edgecoursesmaymaketheirwayintoUniversitext. Moreinformationaboutthisseriesathttp://www.springer.com/series/223 ˇ Vydas Cekanavicˇius Approximation Methods in Probability Theory 123 VydasCˇekanavicˇius VilniusUniversity Vilnius,Lithuania ISSN0172-5939 ISSN2191-6675 (electronic) Universitext ISBN978-3-319-34071-5 ISBN978-3-319-34072-2 (eBook) DOI10.1007/978-3-319-34072-2 LibraryofCongressControlNumber:2016941172 MathematicsSubjectClassification(2010):62E20,60E10,60G50,60F99,41A25,41A27 ©SpringerInternationalPublishingSwitzerland2016 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland Preface The limit theorems of probability theory are at the core of multiple models used in the broad field of scientific research. Their main function is to replace the initial complicated stochastic model of a phenomenon by its somewhat simpler approximatesubstitute.Asarule,suchsubstituteiseasiertousesinceitsproperties arewellknown.However,itraisesakeyquestion:howgoodistheapproximation? For example, even in the famous central limit theorem, the rate of convergence to the normal law can be extremely slow. Therefore, it is important to measure the magnitude of the difference between models or, in other words, to estimate the accuracyof approximation.However,there is a notable lack of booksthat are specificallyfocusedonteachinghowtodoit.Onecouldfindnumerousmonographs and textbooks devoted to approximations, especially related to the central limit theorem, but the prime concern of their authors is the impressive results, not the methods that are used in the process. Thus, such books rarely involve more than one method, not to mention an actual comparison of the applicability of several approaches. This book is loosely based on a course I have been teaching during my visit atHamburgUniversityin June,2004,combinedwith specific methodsandproofs accumulatedfromteachingPhD-levelcoursessince then. Itpresentsa wide range of various well-known and less common methods for estimation of the accuracy of probabilistic approximations. In other words, it is a book on tools for proving approximationtheorems.Asarule,wedemonstratethecorrectnessofthe‘tool’by providing an appropriate proof. In a few cases, when the proofs are very long or sophisticatedornotdirectlyrelatedtothetopicofthe book,theyareomitted,and anappropriatereferencetothesourceoftheresultisprovided. Our ultimate goal is to teach the reader the correct usage of various methods. Therefore, we intentionally present simple cases, examining in detail all steps required for the proof. We provide one further simplification on placing the emphasisontheorderofaccuracyofapproximationratherthanonthemagnitudeof absoluteconstants.Inordertogainabettercommandofthepresentedtechniques, various exercises are added at the end of each chapter, with the majority of their v vi Preface solutionsatthe endof the book.Bibliographicalnotesprovideinformationonthe originsofeachmethodanditsmoreadvancedapplications. Thespecificmethodsdescribedinthisbookincludeaconvolutionmethod,which canbeeasilyextendedfromdistributionstothemoregeneralcommutativeobjects. Inaddition,aconsiderablepartofthebookisrelatedtotheclassicalcharacteristic function method. As usual, we present the Esseen-type inversion formulas. On the other hand, we systematically treat the lattice case, since, in our opinion, it is undeservedlyrarely considered in the literature. Furthermore, one of the chapters is devoted to the powerful but rarely used triangular function method. Though we usually deal with independent random variables, Heinrich’s method for m- dependent variables is also included. Due to the fact that Stein’s method has had a uniquely comprehensive coverage in the literature (with a specific emphasis on the method in [7, 50, 127]), only its short version is presented, together with a discussiononsomespecificmethodologicalaspects,whichmightbeofinteresteven toexperiencedusersofthemethod. Naturally, this book does not contain all known methods for estimating the accuracyof approximation.Forexample,we use onlyfourmetricsand,therefore, the method of metrics is not included. Moreover, it is already comprehensively treated in [116]. Meanwhile, methods for random vectors or elements of infinite- dimensionalspacesdeserveaseparatetextbook. Astandardintermediatecourseinprobabilityshouldbesufficientforthereaders. This book is expected to be especially useful for masters and PhD students. In fact, I wish I had similar book during my PhD studies, because learning various methodsfrom scientific papers is doing it the hard way for no good reason, since alotofintermediateresultsareusuallyomittedandsmalltricksandtwistsarenot adequatelyexplained.Iwasluckytomeetmanymathematicianswhohelpedmein theprocess,andIwouldliketoextendmyspecialthankstoA.Bikelis,J.Kruopis, A.Yu.Za˘ıtsev,A.D.BarbourandB.Roos. Vilnius,Lithuania VydasCˇekanavicˇius 2016 Contents 1 DefinitionsandPreliminaryFacts ....................................... 1 1.1 DistributionsandMeasures.......................................... 1 1.2 MomentInequalities ................................................. 5 1.3 NormsandTheirProperties.......................................... 6 1.4 FourierTransforms................................................... 9 1.5 ConcentrationFunction.............................................. 14 1.6 AlgebraicIdentitiesandInequalities................................ 15 1.7 TheSchemesofSequencesandTriangularArrays................. 19 1.8 Problems.............................................................. 19 2 TheMethodofConvolutions ............................................. 21 2.1 ExpansioninFactorialMoments.................................... 21 2.2 ExpansionintheExponent .......................................... 25 2.3 LeCam’sTrick....................................................... 28 2.4 SmoothingEstimatesfortheTotalVariationNorm ................ 29 2.5 EstimatesinTotalVariationviaSmoothing......................... 32 2.6 SmoothingEstimatesfortheKolmogorovNorm................... 37 2.7 EstimatesintheKolmogorovNormviaSmoothing................ 38 2.8 Kerstan’sMethod..................................................... 44 2.9 Problems.............................................................. 47 3 LocalLatticeEstimates ................................................... 51 3.1 TheInversionFormula............................................... 51 3.2 TheLocalPoissonBinomialTheorem.............................. 53 3.3 ApplyingMomentExpansions ...................................... 54 3.4 ALocalFranken-TypeEstimate..................................... 57 3.5 InvolvingtheConcentrationFunction............................... 59 3.6 SwitchingtoOtherMetrics.......................................... 62 3.7 LocalSmoothingEstimates.......................................... 64 3.8 TheMethodofConvolutionsforaLocalMetric ................... 65 3.9 Problems.............................................................. 67 vii viii Contents 4 UniformLatticeEstimates ................................................ 69 4.1 TheTsaregradskiiInequality ........................................ 69 4.2 TheSecondOrderPoissonApproximation......................... 71 4.3 TakingintoAccountSymmetry ..................................... 74 4.4 Problems.............................................................. 75 5 TotalVariationofLatticeMeasures ..................................... 77 5.1 InversionInequalities ................................................ 77 5.2 ExamplesofApplications............................................ 79 5.3 SmoothingEstimatesforSymmetricDistributions................. 85 5.4 TheBarbour-XiaInequality ......................................... 86 5.5 ApplicationtotheWassersteinNorm ............................... 89 5.6 Problems.............................................................. 91 6 Non-uniformEstimatesforLatticeMeasures .......................... 93 6.1 Non-uniformLocalEstimates ....................................... 93 6.2 Non-uniformEstimatesforDistributionFunctions................. 95 6.3 ApplyingTaylorSeries............................................... 98 6.4 Problems.............................................................. 100 7 DiscreteNon-latticeApproximations..................................... 101 7.1 Arak’sLemma........................................................ 101 7.2 ApplicationtoSymmetricDistributions ............................ 103 7.3 Problems.............................................................. 105 8 AbsolutelyContinuousApproximations................................. 107 8.1 InversionFormula.................................................... 107 8.2 LocalEstimatesforBoundedDensities............................. 109 8.3 ApproximatingProbabilitybyDensity.............................. 110 8.4 EstimatesintheKolmogorovNorm................................. 112 8.5 EstimatesinTotalVariation.......................................... 113 8.6 Non-uniformEstimates .............................................. 117 8.7 Problems.............................................................. 119 9 TheEsseenTypeEstimates................................................ 121 9.1 GeneralInversionInequalities....................................... 121 9.2 TheBerry-EsseenTheorem.......................................... 125 9.3 Distributionswith1CıMoment ................................... 127 9.4 EstimatingCenteredDistributions................................... 130 9.5 DiscontinuousDistributionFunctions............................... 135 9.6 Problems.............................................................. 138 10 LowerEstimates............................................................ 141 10.1 EstimatingTotalVariationviatheFourierTransform.............. 141 10.2 LowerEstimatesfortheTotalVariation............................. 143 10.3 LowerEstimatesforDensities....................................... 146 10.4 LowerEstimatesforProbabilities................................... 147 Contents ix 10.5 LowerEstimatesfortheKolmogorovNorm........................ 149 10.6 Problems.............................................................. 151 11 TheSteinMethod........................................................... 153 11.1 TheBasicIdeaforNormalApproximation......................... 153 11.2 TheLatticeCase...................................................... 155 11.3 EstablishingStein’sOperator........................................ 157 11.4 TheBigThreeDiscreteApproximations............................ 159 11.5 ThePoissonBinomialTheorem..................................... 161 11.6 ThePerturbationApproach ......................................... 163 11.7 EstimatingtheFirstPseudomoment................................. 167 11.8 LowerBoundsforPoissonApproximation......................... 173 11.9 Problems.............................................................. 175 12 TheTriangleFunctionMethod ........................................... 179 12.1 TheMainLemmas ................................................... 179 12.2 AuxiliaryTools....................................................... 184 12.3 FirstExample......................................................... 186 12.4 SecondExample...................................................... 195 12.5 Problems.............................................................. 206 13 Heinrich’sMethodform-DependentVariables......................... 207 13.1 Heinrich’sLemma.................................................... 207 13.2 PoissonApproximation.............................................. 211 13.3 Two-WayRuns ....................................................... 214 13.4 Problems.............................................................. 220 14 OtherMethods.............................................................. 223 14.1 MethodofCompositions............................................. 223 14.2 CouplingofVariables................................................ 229 14.3 TheBentkusApproach............................................... 230 14.4 TheLindebergMethod............................................... 232 14.5 TheTikhomirovMethod............................................. 234 14.6 IntegralsOvertheConcentrationFunction.......................... 236 14.7 AsymptoticallySharpConstants .................................... 237 SolutionstoSelectedProblems ................................................. 241 Bibliography...................................................................... 266 Index............................................................................... 273

Description:
This book presents a wide range of well-known and less common methods used for estimating the accuracy of probabilistic approximations, including the Esseen type inversion formulas, the Stein method as well as the methods of convolutions and triangle function. Emphasising the correct usage of the me
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.