Sede Amministrativa: Università degli Studi di Padova Dipartimento di Matematica ___________________________________________________________________ SCUOLA DI DOTTORATO DI RICERCA IN SCIENZE MATEMATICHE INDIRIZZO MATEMATICA COMPUTAZIONALE CICLO XXVIII Approximation in kernel-based spaces, optimal subspaces and approximation of eigenfunctions Direttore della Scuola : Ch.mo Prof. Pierpaolo Soravia Coordinatore d’indirizzo: Ch.mo Prof. Michela Redivo Zaglia Supervisore :Ch.mo Prof. Stefano De Marchi Dottorando: Gabriele Santin ABSTRACT Kernel-basedapproximationmethodsprovideoptimalrecoveryproce- dures in the native Hilbert spaces in which they are reproducing. Among other, kernels in the notable class of continuous and strictly positive def- inite kernels on compact sets possess a series decomposition in L - or- 2 thonormaleigenfunctionsofaparticularintegraloperator. The interest for this decomposition is twofold. On one hand, the sub- spaces generated by eigenfunctions, or eigenbasis elements, are L -optimal 2 trialspacesinthesenseofwidths. Ontheotherhand,suchexpansionisthe fundamentaltoolofsomeofthestateoftheartalgorithmsinkernelapprox- imation. Despite these reasons motivate a great interest in the eigenbasis, foragivenkernelthisdecompositionisgenerallycompletelyunknown. In this view, this thesis faces the problem of approximating the eigen- basisofgeneralcontinuousandstrictlypositivedefinitekernelsongeneral compactsetsoftheEuclideanspace,foranyspacedimension. We will at first define a new kind of optimality that is based on a error measurement closer to the one of standard kernel interpolation. This new width is then analyzed, and we will determine its value and characterize its optimal subspaces, which are spanned by the eigenbasis. Moreover, thisoptimalityresultissuitabletobescaledtosomeparticularsubspaceof thenativespace, andthisrestrictionallowsustoprovenewresultsonthe construction of computable optimal trial spaces. This situation covers the standardcaseofpoint-basedinterpolation,andwillprovidealgorithmsto approximate the eigenbasis by means of standard kernel techniques. On thebasisofthenewtheoreticalresults,asymptoticestimatesontheconver- genceofthemethodwillbeproven. Thesecomputationswillbetranslated intoeffectivealgorithms,andwewilltesttheirbehaviorintheapproxima- tionoftheeigenspaces. Moreover, twoapplicationsofkernel-basedmeth- odswillbeanalyzed. iii RIASSUNTO Imetodikernelfornisconoproceduredimigliorapprossimazionenegli spazi di Hilbert nativi, ovvero gli spazi in cui tali kernel sono reproducing kernel. Nel caso notevole di kernel continui e strettamente definiti positivi su insiemi compatti, e` nota l’esistenza di una decomposizione in una se- rie data dalle autofunzioni (ortonormali in L ) di un particolare operatore 2 integrale. L’interesse per questa espansione e` motivata da due ragioni. Da un lato, i sottospazi generati dalle autofunzioni, o elementi della eigenbasis, sono i trial space L -ottimali nel senso delle widhts. D’altro canto, tale es- 2 pansionee` lostrumentofondamentaleallabaseinalcunideglialgoritmidi riferimento utilizzati nell’approssimazione con kernel. Nonostante queste ragioni motivino decisamente l’interesse per le eigenbasis, la suddetta de- composizionee` generalmentesconosciuta. Alla luce di queste motivazioni, la tesi affronta il problema dell’ap- prossimazione delle eigenbasis per generici kernel continui e strettamente definitipositivisugenericiinsiemicompattidellospazioeuclideo,perogni dimensione. Inizieremo col definire un nuovo tipo di ottimalita` basata sulla misura dell’errore tipica dell’interpolazione kernel standard. Il nuovo concetto di widthsara` analizzato, nesara` calcolatoilvaloreecaratterizzatiirispettivi sottospazi ottimali, che saranno generati dalla eigenbasis. Inoltre, questo risultato di ottimalita` risultera` essere adatto ad essere ristretto ad alcuni particolari sottospazi dello spazio nativo. Questa restrizione ci permet- tera´ di dimostrare nuovi risultati sulla costruzione di trial space ottimali che siano effettivamente calcolabili. Questa situazione include anche il casodell’interpolazionekernelbasatasuvalutazionipuntuali,efornira` al- goritmi per approssimare le autofunzioni tramite metodi kernel standard. Forniremo inoltre stime asintotiche di convergenza del metodo basate sui nuovi risultati teorici. I metodi presentati saranno implementati in algo- ritminumerici,enetesteremoilcomportamentonell’approssimazionedegli autospazi. Infine analizzeremo l’applicazioni dei metodi kernel a due di- versiproblemidiapprossimazione. v ACKNOWLEDGMENTS First and foremost, I wish to thank my Advisor Prof. Stefano De Marchi, who introduced me to this fascinating topic and pushed me toward inter- estingquestionsandproblems. Hehasbeenamentorinabroadsense,and hegavememanygreatopportunities. My gratitude goes also to all the members of the research group Con- structive Approximation and Applications at the University of Padova and Verona. Since the writing of my Bachelor thesis I found there an exciting and open environment, always committed to motivating and promoting youngstudents. Thecentralpartofthisthesishasbeenwrittenthankstothesupervision of Prof. Robert Schaback. Working with him has been a pleasure and an honor. I would like to thank Prof. Gregory Fasshauer, who accepted to be the Referee of this thesis, and whose comments and suggestions on the first draftcontributedtoimprovethiswork. ManythanksalsotothemembersofmynewresearchgroupNumerical Mathematics at the University of Stuttgart, and especially to Prof. Bernard Haasdonk,whogavemeallthetimeIneededtofinalizethisthesis. Not mentioning everything my family did and do for me, my parents Maria Antonia and Angelo teached and always encouraged me to follow myaspirations,whileputtingthemintherightperspective. Specialthanks to them, and to my brother and sisters Caterina, Francesco e Cecilia, with Laura,TobiaandRiccardo. IwishtothankalsoEmilia,LuciaandFulvio,whoembracedmeasina secondfamily. TheyearsinPadovawouldnothavehadthesamemeaningwithoutmy friendsandcolleaguesAlessio,Anna,Andrea,Cristina,Daniele,Daria,Da- vide,Davide,Federico,Francesco,Giovanni,Laura,Luigi,Luisa,Mariano, Marta,Matteo,MicheleandValentina,withwhomIsharedcountlessbeau- tifulmoments. Manythankstoeachofthem,andinparticulartoLaurafor her priceless friendship, and to Federico, who shared with me his passion forMathematics,andwhooftenbelievedinmemuchmorethanhowIdid bymyself. Finallyandaboveall,thankstoMaria. vii Contents Abstract iv Riassunto vi Acknowledgments viii Introduction 1 1 Preliminaries 5 1.1 Kernelsandkernel-basedspaces . . . . . . . . . . . . . . . . 5 1.2 Kernel-basedinterpolationandapproximation . . . . . . . . 7 1.3 Errorbounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 EmbeddinginL (Ω)andtheeigenbasis . . . . . . . . . . . . 10 2 1.5 Generalizedinterpolation . . . . . . . . . . . . . . . . . . . . 11 2 Optimalsubspacesandapproximationofeigenfunctions 15 2.1 Generalsubspacesofthenativespace . . . . . . . . . . . . . 16 2.1.1 Kernel-basedapproximation . . . . . . . . . . . . . . 16 2.1.2 Otherapproximationprocesses . . . . . . . . . . . . . 18 2.2 OptimalsubspaceswithrespecttothePowerFunction . . . 19 2.2.1 Reviewoftheknownresults . . . . . . . . . . . . . . 19 2.2.2 OptimalitywithrespecttothePowerFunction . . . . 22 2.3 Computableoptimalsubspaces . . . . . . . . . . . . . . . . . 23 2.3.1 Restrictiontoaclosedsubspace . . . . . . . . . . . . . 24 2.3.2 Thecaseofp . . . . . . . . . . . . . . . . . . . . . . . 26 n 2.3.3 Thecaseofκ . . . . . . . . . . . . . . . . . . . . . . . 27 n 2.3.4 Approximationofthetrueeigenspaces . . . . . . . . 28 2.4 Convergenceofthediscreteeigenvalues . . . . . . . . . . . . 29 2.5 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.5.1 Intermediatespaces . . . . . . . . . . . . . . . . . . . 30 2.5.2 Recoveryoflinearfunctionals . . . . . . . . . . . . . . 32 ix 3 Algorithms 35 3.1 Backgroundfactsonchangeofbasis . . . . . . . . . . . . . . 36 3.2 Orthogonalbasiswithrespecttotwogeneralinnerproducts 37 3.2.1 Directconstructionofthediscreteeigenbasis . . . . . 39 3.3 WeightedSingularValueDecompositionbasis . . . . . . . . 40 3.3.1 Motivationanddefinition . . . . . . . . . . . . . . . . 41 3.3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.3.3 Weighteddiscreteleast-squaresapproximation . . . . 45 3.4 Connectionsbetweenthetwoalgorithms . . . . . . . . . . . 48 4 Computationalaspectsandnumericalexperiments 51 4.1 Greedyconstructionofthediscreteeigenbasis . . . . . . . . 52 4.1.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2 FastcomputationoftheWSVDbasis . . . . . . . . . . . . . . 59 4.2.1 TheLanczosmethodandtheapproximationoftheSVD 60 4.2.2 Constructionofthebasis . . . . . . . . . . . . . . . . . 60 4.2.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2.4 Approximation . . . . . . . . . . . . . . . . . . . . . . 63 4.2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 64 5 Applications 71 5.1 Partitionofunitywithlocalstabilization . . . . . . . . . . . . 71 5.1.1 BackgroundfactsonthePUM . . . . . . . . . . . . . 72 5.1.2 Thealgorithm . . . . . . . . . . . . . . . . . . . . . . . 73 5.1.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 74 5.2 ReconstructionofmedicalimagesfromCTscans . . . . . . . 75 5.2.1 BackgroundfactsontheRadontransform . . . . . . . 76 5.2.2 Kernel-basedreconstruction . . . . . . . . . . . . . . . 77 5.2.3 Symmetricformulation . . . . . . . . . . . . . . . . . 78 5.2.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . 83 Appendices A Constructionofnativespacesfromsequences 89 A.1 Nativespacefromsequences . . . . . . . . . . . . . . . . . . 89 A.2 Relationbetweendifferentnativespaces . . . . . . . . . . . . 90 A.3 Projectorsandsubspaces . . . . . . . . . . . . . . . . . . . . . 91 Bibliography 93 x
Description: