ebook img

Approximation by (p,q)-Baskakov-Beta operators PDF

0.39 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Approximation by (p,q)-Baskakov-Beta operators

APPROXIMATION BY (p,q)-BASKAKOV-BETA OPERATORS Neha Malik and Vijay Gupta Department of Mathematics, Netaji Subhas Institute of Technology Sector 3 Dwarka, New Delhi-110078, India neha.malik [email protected] 6 [email protected] 1 0 2 r p Abstract. In the present paper, we consider (p,q)-analogue of the Baskakov-Beta A operators and using it, we estimate some direct results on approximation. Also, we 9 represent the convergence of these operators graphically using MATLAB. 1 Key Words. (p,q)-Beta function, (p,q)-Gamma function. ] AMS Subject Classification. 33B15, 41A25. A C 1. Introduction . h at Approximation theory has been an engaging field of research with abstract approx- m imation to the core (cf. [15]). Varied operators with their approximation properties, [ mainly the quantitative one, have been discussed and studied by many researchers. It has 2 been seen that the generalizations of several well known operators to quantum-calculus v (q-calculus) were introduced in the last three decades and their approximation behavior 8 were also discussed (see [3], [10], [11] and [12]). Further generalization of quantum variant 0 3 is the post-quantum calculus, denoted by (p,q)-calculus. Very recently, some researchers 6 studied in this direction (see [4], [9] and [17]). Few basic definitions and notations men- 0 . tioned below may be found in these papers and references therein. 2 The (p,q)-numbers are given by 0 6 1 [n] := pn−1 +pn−2q +pn−3q2 +···+pqn−2 +qn−1 p,q : v (cid:26) pn−qn , if p (cid:54)= q (cid:54)= 1; i = p−q X n , if p = q = 1. r a n The (p,q)-factorial is given by [n] ! = (cid:81) [r] , n (cid:62) 1, [0] ! = 1. The (p,q)-binomial p,q p,q p,q r=1 coefficient satisfies (cid:20) n (cid:21) [n] ! = p,q , 0 (cid:54) r (cid:54) n. r [n−r] ![r] ! p,q p,q p,q Let n be a non-negative integer, the (p,q)-Gamma function is defined as (p(cid:9)q)n p,q Γ (n+1) = = [n] !, 0 < q < p, p,q (p−q)n p,q 1 where (p(cid:9)q)n = (p−q)(p2 −q2)(p3 −q3)···(pn −qn). p,q The (p,q)-integral for 0 < q < p (cid:54) 1 (generalized Jackson integral) is defined as a (cid:90) (cid:88)∞ qi (cid:18)aqi (cid:19) f(x)d x = (p−q)a f , x ∈ [0,a]. (1) p,q pi+1 pi+1 i=0 0 By simple computation, we get a (cid:90) an+1 xn d x = · p,q [n+1] p,q 0 Also, the integral (1) includes the nodes x = x (p,q) = aqi , i = 0,1,..., geometrically i i pi+1 distributed in (0,+∞), not only in (0,a), as in the case p = 1 (standard Jackson’s q- integral). Moreover, one may observe that only a finite number of nodes in (1) are outside (0,a), i.e., those x for which qi > pi+1. Thus, the above definition of (p,q)-integral may i be well utilized to define the (p,q)-extensions of well-known results. For m,n ∈ N, the (p,q)-Beta function of second kind considered in [2] is given by ∞ (cid:90) tm−1 B (m,n) = d t, p,q (1⊕pt)m+n p,q p,q 0 where the (p,q)-power basis is given by (1⊕pt)m+n = (1+pt)(p+pqt)(p2 +pq2t)···(pm+n−1 +pqm+n−1t). p,q Using the (p,q)-integration by parts: b b (cid:90) (cid:90) f(px) D g(x) d x = f(b)g(b)−f(a)g(a)− g(qx) D f(x) d x, p,q p,q p,q p,q a a it was shown in [2] that the following relation is satisfied by the (p,q)-analogues of Beta and Gamma functions: q Γ (m)Γ (n) p,q p,q B (m,n) = · p,q (pm+1 qm−1)m/2 Γ (m+n) p,q As a special case, if p = q = 1, B(m,n) = Γ(m) Γ(n)/Γ(m + n). It may be observed that in (p,q)-setting, order is important, which is the reason why (p,q)-variant of Beta function does not satisfy commutativity property, i.e., B (m,n) (cid:54)= B (n,m). p,q p,q For n ∈ N, x ∈ [0,∞) and 0 < q < p (cid:54) 1, the (p,q)-analogue of Baskakov operators can be defined as (cid:88)∞ (cid:18)pn−1[k] (cid:19) B (f,x) = bp,q(x)f p,q , n,p,q n,k qk−1[n] p,q k=0 where (p,q)-Baskakov basis function is given by (cid:20) n+k −1 (cid:21) xk bp,q(x) = pk+n(n−1)/2qk(k−1)/2 · n,k k (1⊕x)n+k p,q p,q Gupta[9]consideredthisformof(p,q)-BaskakovoperatorswhilestudyingitsKantorovich variant. This form was also considered by T. Acar et. al. in [5]. Remark 1. It has been observed in [9] that the (p,q)-Baskakov operators satisfy the fol- lowing recurrence relation: [n] Tp,q (qx) = qpn−1 x(1+px) D [Tp,q (x)]+[n] qxTp,q (qx), p,q n,m+1 p,q n,m p,q n,m ∞ (cid:16) (cid:17)m where Tp,q (x) := B (e ,x) = (cid:80) bp,q(x) pn−1[k]p,q . n,m n,p,q m n,k qk−1[n]p,q k=0 Then, we have B (e ,x) = 1, B (e ,x) = x, n,p,q 0 n,p,q 1 [n+1] x2 +pn−1qx p,q B (e ,x) = , n,p,q 2 q[n] p,q where e (t) = ti, i = 0,1,2. In case p = 1, we get the q-Baskakov operators [1], [11]. If i p = q = 1, then these operators reduce to the well known Baskakov operators. 2. Construction of Operators and Moments In the year 1985, Sahai-Prasad [16] introduced the Durrmeyer variant of the well known Baskakov operators. However, there were some technical problems in the main estimates of [16], which were later improved by Sinha et. al. [19]. In this continuation, in 1994, Gupta proposed yet another Durrmeyer type generalization of Baskakov operators by taking the weights of Beta basis function. The operators discussed in [8] provide better approximation in simultaneous approximation than the usual Baskakov-Durrmeyer oper- ators, studied in [19]. This motivated us to study further in this direction and here, we propose the (p,q)-variant of Baskakov-Beta operators. For n ∈ N, x ∈ [0,∞) and 0 < q < p (cid:54) 1, the (p,q)-Baskakov-Beta operators are defined by: ∞ (cid:88)∞ 1 (cid:90) tk Dp,q(f,x) = bp,q(x) f(q2pn+kt) d t, (2) n n,k B (k +1,n) (1⊕pt)n+k+1 p,q k=0 p,q p,q 0 (cid:20) (cid:21) n+k −1 where bp,q(x) = pk+n(n−1)/2 qk(k−1)/2 xk · n,k k (1⊕x)np,+qk p,q In the present article, we estimate the moments of these operators by using (p,q)-Beta functions and establish some direct results in terms of modulus of continuity of first and second order using K-functional. Finally, we provide weighted approximation estimate alongwith the rate of convergence. Lemma 1. The following equalities hold: (1) Dp,q(1,x) = 1; n (2) Dp,q(t,x) = [n]p,qx+pn−2 q, for n > 1; n [n−1]p,q (3) Dp,q(t2,x) = x2[n]p,q(cid:16)[n]p,q+pqn(cid:17)+x[n]p,q{pn−3 q2+2pn−2q+pn−1}+ p2n−5q[2]p,q , for n > 2. n q [n−1]p,q [n−2]p,q q [n−1]p,q [n−2]p,q [n−1]p,q [n−2]p,q Proof. By Remark 1, we have ∞ (cid:88)∞ 1 (cid:90) tk Dp,q(1,x) = bp,q(x) d t n n,k B (k +1,n) (1⊕pt)n+k+1 p,q k=0 p,q p,q 0 ∞ (cid:88) 1 = bp,q(x) B (k +1,n) n,k B (k +1,n) p,q p,q k=0 ∞ (cid:88) = bp,q(x) n,k k=0 = B (1,x) = 1. n,p,q Next, using [k +1] = qk +p[k] , we have p,q p,q ∞ (cid:88)∞ 1 (cid:90) tk+1q2pn+k Dp,q(t,x) = bp,q(x) d t n n,k B (k +1,n) (1⊕pt)n+k+1 p,q k=0 p,q p,q 0 ∞ (cid:88) 1 = bp,q(x) q2pn+kB (k +2,n−1) n,k B (k +1,n) p,q p,q k=0 ∞ (cid:88) Γ (n+k +1) = bp,q(x) p,q q2pn+k n,k q[2−(k+1)k]/2p−(k+1)(k+2)/2Γ (k +1)Γ (n) p,q p,q k=0 Γ (k +2)Γ (n−1) × q[2−(k+2)(k+1)]/2p−(k+2)(k+3)/2 p,q p,q Γ (n+k +1) p,q ∞ (cid:88) [k +1] = bp,q(x) pn−2 q1−k p,q n,k [n−1] p,q k=0 ∞ 1 (cid:88) = bp,q(x) pn−2 q1−k (qk +p[k] ) [n−1] n,k p,q p,q k=0 pn−2 q (cid:88)∞ [n] (cid:88)∞ pn−1[k] = bp,q(x)+ p,q bp,q(x) p,q· [n−1] n,k [n−1] n,k qk−1[n] p,q p,q p,q k=0 k=0 Using Remark 1, we have pn−2 q [n] Dp,q(t,x) = B (1,x)+ p,q B (t,x) n [n−1] n,p,q [n−1] n,p,q p,q p,q pn−2 q [n] p,q = ·1+ ·x [n−1] [n−1] p,q p,q [n] x+pn−2 q p,q = · [n−1] p,q Further, using the identity [k +2] = qk+1 +pqk +p2[k] , we get p,q p,q ∞ (cid:88)∞ 1 (cid:90) tk+2q4p2(n+k) Dp,q(t2,x) = bp,q(x) d t n n,k B (k +1,n) (1⊕pt)n+k+1 p,q k=0 p,q p,q 0 ∞ (cid:88) 1 = bp,q(x) q4p2(n+k) B (k +3,n−2) n,k B (k +1,n) p,q p,q k=0 ∞ (cid:88) Γ (n+k +1) = bp,q(x) p,q q4p2(n+k) n,k q[2−(k+1)k]/2 p−(k+1)(k+2)/2 Γ (k +1) Γ (n) p,q p,q k=0 Γ (k +3) Γ (n−2) × q[2−(k+3)(k+2)]/2 p−(k+3)(k+4)/2 p,q p,q Γ (n+k +1) p,q ∞ (cid:88) [k +2] [k +1] = bp,q(x) p2n−5 q1−2k p,q p,q n,k [n−1] [n−2] p,q p,q k=0 ∞ = 1 (cid:88)bp,q(x) p2n−5 q1−2k (cid:0)qk+1 +pqk +p2[k] (cid:1) [n−1] [n−2] n,k p,q p,q p,q k=0 (cid:0) (cid:1) × qk +p[k] p,q p2n−5q2 +p2n−4q (cid:88)∞ = bp,q(x) [n−1] [n−2] n,k p,q p,q k=0 pn−3q[n] (cid:88)∞ pn−1[k] + p,q bp,q(x) p,q [n−1] [n−2] n,k qk−1[n] p,q p,q p,q k=0 2pn−2[n] (cid:88)∞ pn−1[k] + p,q bp,q(x) p,q [n−1] [n−2] n,k qk−1[n] p,q p,q p,q k=0 [n]2 (cid:88)∞ p2n−2[k]2 + p,q bp,q(x) p,q· q [n−1] [n−2] n,k q2k−2[n]2 p,q p,q k=0 p,q Again, using Remark 1 p2n−5q2 +p2n−4q pn−3q[n] Dp,q(t2,x) = B (1,x) + p,q B (t,x) n [n−1] [n−2] n,p,q [n−1] [n−2] n,p,q p,q p,q p,q p,q 2pn−2[n] [n]2 + p,q B (t,x) + p,q B (t2,x) n,p,q n,p,q [n−1] [n−2] q [n−1] [n−2] p,q p,q p,q p,q p2n−5q2 +p2n−4q x[n] {pn−3q +2pn−2} p,q = + [n−1] [n−2] [n−1] [n−2] p,q p,q p,q p,q (cid:26) pn−1x (cid:18) px(cid:19)(cid:27) [n]2 + x2 + 1+ p,q [n] q q [n−1] [n−2] p,q p,q p,q (cid:16) (cid:17) x2[n] [n] + pn p,q p,q q x[n]p,q{pn−3q2 +2pn−2q +pn−1} = + q [n−1] [n−2] q [n−1] [n−2] p,q p,q p,q p,q p2n−5q[2] p,q + · [n−1] [n−2] p,q p,q (cid:3) Remark 2. Let n > 2 and x ∈ [0,∞), then for 0 < q < p (cid:54) 1, we have the central moments as follows: µp,q(x) := Dp,q((t−x),x) n,1 n x([n] −[n−1] )+pn−2q p,q p,q = [n−1] p,q and µp,q(x) := Dp,q((t−x)2,x) n,2 n (cid:110) (cid:16) (cid:17) (cid:111) x2 [n] [n] + pn +q[n−1] [n−2] −2q[n] [n−2] p,q p,q q p,q p,q p,q p,q = q[n−1] [n−2] p,q p,q x{[n] (pn−3q2 +2pn−2q +pn−1)−2pn−2q2[n−2] } [2] p2n−5q p,q p,q p,q + + · q[n−1] [n−2] [n−1] [n−2] p,q p,q p,q p,q 3. Direct Estimations In this section, we prove direct results using two different approaches, i.e., K-functional and Steklov mean. We also represent the convergence of the (p,q)-Baskakov-Beta opera- tors using the software MATLAB. Wedenotethenorm||f|| = sup |f(x)|onC [0,∞),theclassofrealvaluedcontinuous B x∈[0,∞) bounded functions. For f ∈ C [0,∞) and δ > 0, the m-th order modulus of continuity is B defined as ω (f,δ) = sup sup |∆mf(x)|, m h 0(cid:54)h(cid:54)δ x∈[0,∞) where ∆ is the forward difference and ∆m = ∆ (cid:0)∆m−1(cid:1) for m (cid:62) 1. In case m = 1, we h h h h mean the usual modulus of continuity denoted by ω(f,δ). The Peetre’s K-functional is defined as (cid:8) (cid:9) K (f,δ) = inf ||f −g||+δ||g(cid:48)(cid:48)|| : g ∈ C2[0,∞) , 2 B g∈C2[0,∞) B where C2[0,∞) = {g ∈ C [0,∞) : g(cid:48),g(cid:48)(cid:48) ∈ C [0,∞)}. B B B Theorem 1. Let f ∈ C [0,∞) and 0 < q < p (cid:54) 1, then for every x ∈ [0,∞) and n > 2, B the following inequality holds: (cid:18) (cid:113) (cid:19) |Dp,q(f,x)−f(x)| (cid:54) ω(cid:0)f,|µp,q(x)|(cid:1)+C ω f, µp,q(x)+(cid:0)µp,q(x)(cid:1)2 , n n,1 2 n,2 n,1 where C is some positive constant. Proof. Consider the following operator: (cid:18)[n] x+pn−2 q(cid:19) Dˇp,q(f,x) = Dp,q(f,x)−f p,q +f(x), x ∈ [0,∞) (3) n n [n−1] p,q Let g ∈ C2[0,∞) and x, t ∈ [0,∞). By Taylor’s expansion, we have B t (cid:90) g(t) = g(x)+(t−x) g(cid:48)(x)+ (t−u) g(cid:48)(cid:48)(u) du, x Applying Dˇp,q, we get n   t (cid:90) Dˇp,q(g,x)−g(x) = g(cid:48)(x)Dˇp,q((t−x),x)+Dˇp,q (t−u) g(cid:48)(cid:48)(u) du,x. n n n x Hence, |Dˇp,q(g,x)−g(x)| n [n]p,qx+pn−2 q (cid:54) (cid:18)Dp,q(cid:12)(cid:12)(cid:12)(cid:90)t |t−u| |g(cid:48)(cid:48)(u)| du(cid:12)(cid:12)(cid:12), x(cid:19)+(cid:12)(cid:12)(cid:12) [n(cid:90)−1]p,q (cid:18)[n]p,qx+pn−2 q −u(cid:19)g(cid:48)(cid:48)(u) du(cid:12)(cid:12)(cid:12) n (cid:12) (cid:12) (cid:12) [n−1] (cid:12) p,q x x [n]p,qx+pn−2 q (cid:54) Dp,q((t−x)2, x) (cid:107)g(cid:48)(cid:48)(cid:107)+(cid:12)(cid:12)(cid:12) [n(cid:90)−1]p,q (cid:18)[n]p,qx+pn−2 q −u(cid:19) g(cid:48)(cid:48)(u) du(cid:12)(cid:12)(cid:12) n (cid:12) [n−1] (cid:12) p,q x (cid:40) (cid:41) (cid:18)x ([n] −[n−1] )+pn−2q(cid:19)2 (cid:54) µp,q(x)+ p,q p,q (cid:107)g(cid:48)(cid:48)(cid:107). n,2 [n−1] p,q Now, using operators (2), we have, by Lemma 1, ∞ (cid:88)∞ 1 (cid:90) tk |Dp,q(f,x)| (cid:54) bp,q(x) |f(q2pn+kt)| d t. n n,k B (k +1,n) (1⊕pt)n+k+1 p,q k=0 p,q p,q 0 Hence, by (3), |Dp,q(f,x)| (cid:54) 3(cid:107)f(cid:107). n Therefore |Dp,q(f,x)−f(x)| n (cid:54) |Dˇp,q(f −g,x)−(f −g)(x)|+|Dˇp,q(g,x)−g(x)|+(cid:12)(cid:12)(cid:12)f (cid:18)[n]p,qx+pn−2 q(cid:19)−f(x)(cid:12)(cid:12)(cid:12) n n (cid:12) [n−1] (cid:12) p,q (cid:40) (cid:41) (cid:18)x ([n] −[n−1] )+pn−2q(cid:19)2 (cid:54) 4 (cid:107)f −g(cid:107)+ µp,q(x)+ p,q p,q (cid:107)g(cid:48)(cid:48)(cid:107) n,2 [n−1] p,q (cid:18) |x ([n] −[n−1] )+pn−2q|(cid:19) p,q p,q +ω f, . [n−1] p,q Lastly, taking infimum over all g ∈ C2[0,∞), and using the inequality K (f,δ) (cid:54) √ B 2 Cω (f, δ), δ > 0 due to [6], we get the desired assertion. (cid:3) 2 Example 1. We show comparisons and some illustrative graphs for the convergence of (p,q)-analogue of Baskakov-Beta operators Dp,q(f,x) for different values of the parameters n p and q, such that 0 < q < p (cid:54) 1. For x ∈ [0,∞), p = 0.9 and q = 0.8, the convergence of the operators Dp,q(f,x) to the n function f, where f(x) = 18x2 −12x+2015, for different values of n is illustrated using MATLAB. Figure 1. D0.9,0.8(f,x) for x ∈ [0,∞), when f(x) = 18x2−12x+2015. n Example 2. For x ∈ [0,∞), p = 0.9 and q = 0.75, the convergence of the operators Dp,q(f,x) to the function f, where f(x) = 25x2 − 2x + 7, for different values of n is n illustrated using MATLAB. Figure 2. D0.9,0.75(f,x) for x ∈ [0,∞), when f(x) = 25x2−2x+7. n Let B [0,∞) be the space of all real valued functions on [0,∞) satisfying the condition σ |f(x)| (cid:54) C σ(x), where C > 0 and σ(x) is a weight function. Let C [0,∞) be the f f σ space of all continuous functions in B [0,∞) with the norm (cid:107)f(cid:107) = sup |f(x)| and σ σ σ(x) x∈[0,∞) (cid:110) (cid:111) C0[0,∞) = f ∈ C [0,∞) : lim |f(x)| < ∞ . Weconsiderσ(x) = (1+x2)inthefollowing σ σ σ(x) x→∞ two results. Also, we denote the modulus of continuity on f on the closed interval [0,κ], κ > 0 by ω (f,δ) = sup|t−x| (cid:54) δ sup |f(t)−f(x)|. κ x,t∈[0,κ] It is easy to see that for f ∈ C [0,∞), the modulus of continuity ω (f,δ) tends to zero. σ κ Following is a theorem on the rate of convergence for the operators Dp,q(f,x). n Theorem 2. Let f ∈ C [0,∞), 0 < q < p (cid:54) 1 and ω (f,δ) be its modulus of continuity σ κ+1 on the finite interval [0,κ+1] ⊂ [0,∞), where κ > 0. Then, for every n > 2, (cid:16) (cid:113) (cid:17) ||Dp,q(f)−f|| (cid:54) L µp,q(x)+ω +2ω f, L µp,q(x) , n C[0,κ] n,2 κ+1 n,2 where L = 6 C (1+κ2)(1+κ+κ2). f Proof. For x ∈ [0,κ] and t > κ+1, since t−x > 1, therefore we have |f(t)−f(x)| (cid:54) C (2+x2 +t2) (cid:54) (2+3x2 +2(t−x)2) (cid:54) 6 C (1+κ2)(t−x)2. (4) f f And for x ∈ [0,κ] and t (cid:54) κ+1, we have (cid:18) (cid:19) |t−x| |f(t)−f(x)| (cid:54) ω (f,|t−x|) (cid:54) 1+ ω (f,δ), (5) κ+1 κ+1 δ with δ > 0. Using above two equations (4) and (5), (cid:18) (cid:19) |t−x| |f(t)−f(x)| (cid:54) 6 C (1+κ2)(t−x)2 + 1+ ω (f,δ), f κ+1 δ for t (cid:62) 0. Now, |Dp,q(f,x)−f(x)| (cid:54) Dp,q(|f(t)−f(x)|,x) n n (cid:18) 1 (cid:19)1/2 (cid:54) 6 C (1+κ2)Dp,q((t−x)2,x)+ω (f,δ) 1+ Dp,q((t−x)2,x) f n κ+1 δ n Using Remark 2 and Schwarz’s inequality, for every 0 < q < p (cid:54) 1 and x ∈ [0,κ], we have (cid:18) (cid:19) 1 (cid:113) |Dp,q(f,x)−f(x)| (cid:54) 6 C (1+κ2) µp,q(x)+ω (f,δ) 1+ µp,q(x) n f n,2 κ+1 δ n,2 (cid:18) (cid:19) 1(cid:113) (cid:54) L µp,q(x)+ω (f,δ) 1+ µp,q(x) . n,2 κ+1 δ n,2 (cid:113) Taking δ = L µp,q(x), the conclusion holds. (cid:3) n,2 Following is a direct estimate in weighted approximation. Theorem 3. Let p = p , q = q satisfying 0 < q < p (cid:54) 1 and p → 1, q → 1, pn → a, n n n n n n n qn → b as n → ∞. Then, for f ∈ C0[0,∞), we have n σ lim (cid:107)Dp,q(f)−f(cid:107) = 0. n σ n→∞ Proof. Due to the well-known Bohman-Korovkin theorem in [7], it is sufficient to verify the following equation holds: (cid:0) (cid:1) lim (cid:107)Dp,q tk,x −xk(cid:107) = 0, for k = 0, 1, 2. n σ n→∞ By Lemma 1, the result immediately follows for k = 0. Again, by Lemma 1, we have: (cid:12) (cid:12) (cid:107)Dp,q(t,x)−x(cid:107) = sup (cid:12)(cid:12)[n]p,qx+pn−2 q −x(cid:12)(cid:12) 1 n σ (cid:12) [n−1] (cid:12) (1+x2) x∈[0,∞) p,q (cid:12)(cid:12)(cid:26)x([n]p,q −[n−1]p,q)+pn−2q(cid:27)(cid:12)(cid:12) 1 = sup (cid:12) (cid:12) (cid:12) [n−1] (cid:12) (1+x2) x∈[0,∞) p,q

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.