ebook img

Approximation By Algebraic Numbers PDF

292 Pages·2004·1.43 MB·english
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Approximation By Algebraic Numbers

This page intentionally left blank CAMBRIDGETRACTSINMATHEMATICS GeneralEditors B.BOLLOBA´S.W.FULTON,A.KATOK,F.KIRWAN,P.SARNAK,B.SIMON 160 Approximation by Algebraic Numbers Approximation by Algebraic Numbers YANN BUGEAUD Universite´ LouisPasteur,Strasbourg CAMBRIDGEUNIVERSITYPRESS Cambridge,NewYork,Melbourne,Madrid,CapeTown,Singapore,SãoPaulo Cambridge University Press TheEdinburghBuilding,CambridgeCB22RU,UK PublishedintheUnitedStatesofAmericabyCambridgeUniversityPress,NewYork www.cambridge.org Informationo nthistitle:www.cambridge.org/9780521823296 © Cambridge University Press 2004 Thispublicationisincopyright.Subjecttostatutoryexceptionandtotheprovisionof relevantcollectivelicensingagreements,noreproductionofanypartmaytakeplace withoutthewrittenpermissionofCambridgeUniversityPress. Firstpublishedinprintformat 2004 ISBN-13 978-0-511-26591-4 eBook (NetLibrary) ISBN-10 0-511-26591-3 eBook (NetLibrary) ISBN-13 978-0-521-82329-6 hardback ISBN-10 0-521-82329-3 hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracyofurls forexternalorthird-partyinternetwebsitesreferredtointhispublication,anddoesnot guaranteethatanycontentonsuchwebsitesis,orwillremain,accurateorappropriate. Contents Preface pageix Frequentlyusednotation xiv 1 Approximationbyrationalnumbers 1 1.1 DirichletandLiouville 1 1.2 Continuedfractions 5 1.3 ThetheoremofKhintchine 12 1.4 TheDuffin–SchaefferConjecture 18 1.5 Complementaryresultsoncontinuedfractions 19 1.6 Exercises 21 1.7 Notes 23 2 Approximationtoalgebraicnumbers 27 2.1 Rationalapproximation 27 2.2 Effectiverationalapproximation 29 2.3 Approximationbyalgebraicnumbers 31 2.4 Effectiveapproximationbyalgebraicnumbers 33 2.5 Remarksonirrationalityandtranscendencestatements 39 2.6 Notes 40 3 TheclassificationsofMahlerandKoksma 41 3.1 Mahler’sclassification 42 3.2 SomepropertiesofMahler’sclassification 45 3.3 Koksma’sclassification 47 3.4 Comparisonbetweenbothclassifications 52 3.5 Someexamples 61 3.6 ExponentsofDiophantineapproximation 62 v vi Contents 3.7 Exercises 68 3.8 Notes 70 4 Mahler’sConjectureonS-numbers 74 4.1 Statementsofthetheorems 75 4.2 Anauxiliaryresult 78 4.3 ProofofTheorem4.3 80 4.4 Exercise 87 4.5 Notes 88 5 Hausdorffdimensionofexceptionalsets 90 5.1 HausdorffmeasureandHausdorffdimension 90 5.2 UpperboundfortheHausdorffdimension 93 5.3 Themassdistributionprinciple 95 5.4 Regularsystems 98 5.5 ThetheoremofJarn´ık–Besicovitch 103 ∗ 5.6 HausdorffdimensionofsetsofS -numbers 105 5.7 HausdorffdimensionofsetsofS-numbers 110 5.8 RestrictedDiophantineapproximation 113 5.9 Exercises 114 5.10 Notes 117 6 Deeperresultsonthemeasureofexceptionalsets 122 6.1 Optimalregularsystems 123 6.2 AKhintchine-typeresult 125 6.3 Hausdorffdimensionofexceptionalsets 129 6.4 Hausdorffmeasureofexceptionalsets 130 6.5 Setswithlargeintersectionproperties 130 6.6 Applicationtotheapproximationbyalgebraicnumbers 131 6.7 Exercises 136 6.8 Notes 137 7 OnT-numbersandU-numbers 139 7.1 T-numbersdoexist 140 7.2 Theinductiveconstruction 141 7.3 CompletionoftheproofofTheorem7.1 149 7.4 Onthegapbetweenw∗andw 151 n n 7.5 HausdorffdimensionandHausdorffmeasure 152 7.6 OnU-numbers 153 7.7 AmethodofGu¨ting 159 Contents vii 7.8 BriefsummaryoftheresultstowardstheMainProblem 161 7.9 Exercises 162 7.10 Notes 163 8 Otherclassificationsofrealandcomplexnumbers 166 8.1 Sprindzˇuk’sclassification 166 8.2 AnotherclassificationproposedbyMahler 171 8.3 Transcendencemeasuresandmeasuresofalgebraic approximation 180 8.4 Exercises 184 8.5 Notes 188 9 Approximationinotherfields 191 9.1 Approximationinthefieldofcomplexnumbers 191 9.2 ApproximationinthefieldofGaussianintegers 193 9.3 Approximationinthe p-adicfields 194 9.4 Approximationinfieldsofformalpowerseries 199 9.5 Notes 201 10 Conjecturesandopenquestions 204 10.1 TheLittlewoodConjecture 204 10.2 Openquestions 206 10.3 Notes 217 AppendixA Lemmasonpolynomials 219 A.1 Definitionsandusefullemmas 219 A.2 Liouville’sinequality 222 A.3 Zerosofpolynomials 227 A.4 Exercises 233 A.5 Notes 233 AppendixB Geometryofnumbers 235 References 240 Index 273

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.