ebook img

Approximation and Modeling with B-Splines PDF

221 Pages·2014·10.838 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Approximation and Modeling with B-Splines

Approximation and Modeling with B-Splines Approximation and Modeling with B-Splines Klaus Höllig Universität Stuttgart Stuttgart, Germany Jörg Hörner Universität Stuttgart Stuttgart, Germany Society for Industrial and Applied Mathematics Philadelphia Copyright © 2013 by the Society for Industrial and Applied Mathematics 10 9 8 7 6 5 4 3 2 1 All rights reserved. Printed in the United States of America. No part of this book may be reproduced, stored, or transmitted in any manner without the written permission of the publisher. For information, write to the Society for Industrial and Applied Mathematics, 3600 Market Street, 6th Floor, Philadelphia, PA 19104-2688 USA. Trademarked names may be used in this book without the inclusion of a trademark symbol. These names are used in an editorial context only; no infringement of trademark is intended. MATLAB is a registered trademark of The MathWorks, Inc. For MATLAB product information, please contact The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA, 508-647-7000, Fax: 508-647-7001, [email protected], www.mathworks.com. Library of Congress Cataloging-in-Publication Data Höllig, Klaus, author. Approximation and modeling with B-splines / Klaus Höllig, Universität Stuttgart, Stuttgart, Germany; Jörg Hörner, Universität Stuttgart, Stuttgart, Germany. pages cm. -- (Applied mathematics) Includes bibliographical references and index. ISBN 978-1-611972-94-8 (alk. paper) 1. Spline theory. 2. Approximation theory. 3. Numerical analysis. 4. Mathematical models. 5. Engineering--Mathematical models. 6. Computer science--Mathematics. 7. Algorithms. 8. Spline theory--Industrial applications. I. Hörner, Jörg, author. II. Title. QA224.H645 2013 511’.4223--dc23 2013029695 is a registered trademark. Contents Preface vii Introduction ix Notation andSymbols xiii 1 Polynomials 1 1.1 MonomialForm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 TaylorApproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.4 BernsteinPolynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.5 PropertiesofBernsteinPolynomials . . . . . . . . . . . . . . . . . . . . . 11 1.6 HermiteInterpolant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 1.7 ApproximationofContinuousFunctions. . . . . . . . . . . . . . . . . . 16 2 BézierCurves 19 2.1 ControlPolygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 PropertiesofBézierCurves . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 AlgorithmofdeCasteljau . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.5 Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.6 Subdivision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.7 GeometricHermiteInterpolation. . . . . . . . . . . . . . . . . . . . . . . 33 3 RationalBézierCurves 37 3.1 ControlPolygonandWeights . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.2 BasicProperties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.4 ConicSections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4 B-Splines 51 4.1 RecurrenceRelation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2 Differentiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 4.3 RepresentationofPolynomials. . . . . . . . . . . . . . . . . . . . . . . . . 59 4.4 Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.5 EvaluationandDifferentiation . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.6 PeriodicSplines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 v vi Contents 5 Approximation 77 5.1 Schoenberg’sScheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 5.2 Quasi-Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.3 AccuracyofQuasi-Interpolation . . . . . . . . . . . . . . . . . . . . . . . 85 5.4 Stability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.5 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.6 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6 SplineCurves 105 6.1 ControlPolygon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2 BasicProperties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.3 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 6.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.5 Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 7 MultivariateSplines 133 7.1 Polynomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.2 PolynomialApproximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 7.3 Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 7.4 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 7.5 ApproximationMethods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 7.6 HierarchicalBases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 8 SurfacesandSolids 155 8.1 BézierSurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 8.2 SplineSurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 8.3 SubdivisionSurfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164 8.4 Blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 8.5 Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 9 FiniteElements 173 9.1 Ritz–GalerkinApproximation . . . . . . . . . . . . . . . . . . . . . . . . . 173 9.2 WeightedB-Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 9.3 IsogeometricElements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 9.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 9.5 Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 NotesandComments 193 Appendix 197 Bibliography 205 Index 213 Preface B-splinesarefundamentaltoapproximation anddatafitting,geometricmodeling, auto- mated manufacturing, computer graphics, and numerical simulations. Because of their computationalefficiency,flexibility,andelegance,B-splinetechniquesaremuchsuperior toother,moreelementary,piecewisepolynomialrepresentations. Asaconsequence,they havebecomethemethodofchoiceinnumerousbranchesofappliedmathematics,com- puterscience,andengineering. InthisbookwegiveanintroductiontothebasicB-splinetheory,describingapproxi- mationmethodsandalgorithmsaswellasmodelinganddesigntechniques. Wethinkthat onlyasolidknowledgeinalltheseareasprovidesanoptimalbasisforinterdisciplinaryre- searchandhandlingofcomplexnovelapplications. Thenewfiniteelementschemeswith B-splinesprovideaperfectexampleofasuccessfulsynthesisofmethodsfromthesediffer- entfields. TopicsdiscussedinourbookincludetheBézierform,computingwithB-splines,ap- proximationandinterpolation,splinerepresentationsofcurves, surfaces,andsolids,hi- erarchicalbases,andfiniteelementsimulation. Wedonotaimforcompletenessasmore comprehensive and specialized texts do. Instead, we focus on key results and methods whicharemostwidelyusedinpractice. Inthisway,everyimportantaspectofB-spline theoryisdescribedinarelativelyshortmonograph,leadingfromelementarybasicmate- rialtoadvancedtopicswhicharesubjectofcurrentresearch. Thematerialofthebookcanbealmostcoveredinaone-semestermathematicsorcom- putersciencegraduatecourse. Thecombinationofmathematics,programming, model- ing,andgraphicsmakesthesubjectfascinatingtoteach. Thereisanever-endingsupplyof interestingthesistopics,typicallyprovidedbynewindustrialapplications. Furtherstim- ulatingtheenthusiasmforB-splinesamongstudentsandassistinginteachingaresomeof ourgoals. Togetherwiththisbookweplantoprovide • acollectionofproblems,partiallywithsolutions; • slidesforlectures; • programsanddemos. Thissupplementarymaterialwillbemadeavailableonthewebsiteforourbook(http:// www.siam.org/books/ot132). Thebookisessentiallyself-contained. Somebasicfactsfromlinearalgebra,analysis, aswellaselementarydifferentialgeometry andfunctionalanalysis, whicharerequired, arelistedinanappendix. Hence,thematerialiseasilyaccessiblenotonlyformathematics andcomputersciencestudentsbutalsoforbeginninggraduatesinengineering. Wehaveverymuchenjoyedwritingthisbook. TheNumericalAnalysisandGeomet- ricModelinggroup inStuttgart provided avery creative atmosphere. Inparticular, we gratefullyacknowledgetheexcellentcooperation withUlrichReifandJoachimWipper vii viii Preface onfiniteelementprojects. SpecialthanksalsotoElisabethHölligandIrmgardWalterfor helpingtoproofreadvariousdraftsofourmanuscipt. Stuttgart,December2012 KlausHölligandJörgHörner Introduction B-splinesplayanimportantroleinmanyareasofappliedmathematics,computerscience, andengineering. Typical applicationsariseinapproximation offunctionsanddata, au- tomateddesignandmanufacturing,computergraphics,medicalimaging,andnumerical simulation. Therearealsobeautifulresultsinpuremathematics,inparticularonn-width [88]andinconnectionwithbox-splinetheory[22]. Thisdiversityofareasandtechniques involvedmakesB-splinesafascinatingresearchtopicwhichhasattractedagrowingnum- berofscientistsinuniversitiesandindustry. Polynomialandpiecewisepolynomialapproximationshavebeenusedinanumberof different contexts for a very long time. But perhaps it isfairto say that the systematic analysisofsplinesbeganwithSchoenberg’spaperonapproximation ofequidistantdata in1946[105]. Hiswork initiatedvery activeresearch onapproximation methods, asis documented, e.g., in theearly books on splines by Ahlberg, Nilson, and Walsh [1], de Boor[19],andSchumaker[111]. ThefullpotentialofB-splinesfornumericalmethods wasrealized by deBoor. Hisalgorithmsforcomputing withlinearcombinationsofB- splines remain basic toolsfor any splinesoftware; see [15, 18] and APractical Guide to Splines[19]. Onthetheoreticalside,deBoor’sdefinitionofamultivariateB-spline[17] was the starting point of a genuine multivariate spline theory with key contributions byDahmenandMicchelli(cf.,e.g., [36]forasmallsampleofintriguingresultsonbox- splines),deBoor,DeVore,Riemenschneider,Schumaker,andmanyothers. Paralleltothemathematicalresearchonsplines,engineersdevelopedpiecewisepoly- nomialrepresentationsforautomateddesignandmanufacturing[46]. AtBoeing,Fergu- son [53]used splineinterpolation forcurve andsurfacemodeling. AtGeneral Motors, Coons [33]invented the well-knownblending scheme forcurve networks. AtRenault andCitroën,afundamentalsteptowardsmodernmodelingtechniqueswasmadebyBézier [7,8,9,10]anddeCasteljau[25,26]. Theyindependentlydiscoveredthefavorablegeo- metricandalgorithmicpropertiesoftheBernsteinbasis,introducingcontrolpolygonsas anintuitivetoolfordesigners. TheconferenceinUtah[3],organizedbyBarnhillandRiesenfeldin1974,helpedto bridgethegapbetween themathematical andengineeringcommunity. Anewresearch area was founded: Computer Aided Geometric Design (CAGD). The famous knot in- sertion and subdivision algorithms forcontrol polygons developed by Boehm [11]and Cohen,Lyche,andRiesenfeld[30]illustratethebeautyoftheinterplaybetweenmodel- ing(engineering)andapproximation(mathematics). Farin’sbook[49]givesanexcellent description of the emerging geometric spline theory (cf. also the recent books by Co- hen,Riesenfeld,andElber[31]andPrautzsch, Boehm, andPaluszny[90]aswellasthe HandbookofComputerAidedGeometricDesign[52]and[48]). B-splinesalsobegantoplayanimportantroleincomputergraphics. Chaikin’salgo- rithm[29,100]wasthefirstexampleofafastspline-based renderingschemeforcurves. Very well known are the algorithms of Catmull/Clark [27] and Doo/Sabin [43] for ix x Introduction refinement of surface meshes with arbitrary topology (cf. the book by Peters and Reif [86]forthe fascinatingmathematical theory behind such seeminglysimple subdivision strategies). Step by step, B-splines entered almost all engineering areas. Most recently, B-splines were used as finite elements. Weighted approximations, proposed by Höllig, Reif,andWipper[69],andisogeometricmethods,introducedbyHughes,Cottrell,and Bazilevs[71],haveprovedtobequitesuccessful. Λsplines,β-splines,ν-splines,ω-splines,τ-splines,A-splines,ARMAsplines,B-splines,Bernoullisplines, BM-splines,box-splines,cardinalsplines,Catmull-Romsplines,Dm-splines,Dirichletsplines,discretesplines, E-splines,ellipticsplines,exponentialEulersplines,exponentialboxsplines,fundamentalsplines,g-splines, Gibbs-Wilbrahamsplines,Hm,p-splines,harmonicsplines,Helixsplines,Hermitesplines,Hermite-Birkhoff splines,histosplines,hyperbolicsplines,Inf-convolutionsplines,K-splines,L-monosplines,L-splines,Lagrange splines,LB-splines,Legendresplines,Lg-splines,M-splines,metaharmonicsplines,minimal-energysplines, monosplines,naturalsplines,NBV-splines,NURBS,ODRsplines,perfectsplines,polyharmonicsplines, Powell-Sabinsplines,pseudosplines,Q-splines,Schoenbergsplines,simplexsplines,smoothingsplines,super splines,thin-platesplines,triangularsplines,trigonometricsplines,Tschebyscheffsplines,TURBS,v-splines, variationdiminishingsplines,vertexsplines,VP-splines,web-splines,Wilson-Fowlersplines,X-splines,... DifferentTypesofSplinesandSplineTechniques Todatemorethan8000articlesandbooksonsplineshavebeenpublished. Theabove listing gives the impression that there is a spline for almost any application, and there is! Our book covers only a very limited selection—it serves as a basic introduction to B-splinetheory. Inadditiontoessentialbasicmaterial,wehavegivenprioritytothede- scriptionoftopicswhichareofprimaryimportanceinpracticeand/orwhicharesubject ofcontinuingresearch. OutlineoftheText After some preliminary discussion of basic facts about polynomials in Chapter 1, Chapters2and3aredevotedtotheBernstein–Bézierform. Thisimportantspecialcase allowsustoexplain manykeyfeaturesofB-splinerepresentationsinarelativelysimple setting. UnivariateB-splinesaredefinedinChapter4. Wetakeanalgorithmicapproach, derivingpropertiesfromthefundamentalrecurrencerelations. Chapter5discussesvar- iousapproximation methodssuchasinterpolation, quasi-interpolation, andsmoothing. Then in Chapter 6, we describe modeling techniques for spline curves. Fundamental geometricalgorithmsareknotinsertionanduniformsubdivisionwithnumerousappli- cations. Chapters 7and8 aredevotedtothemultivariatetheory ofapproximation and modelingbased onthetensorproduct formalism. Thissimplestandmostefficient rep- resentationdoesalsopossesssufficientlocalflexibilityincombinationwithhierarchical refinement. Thelastchaptergivesabriefintroductiontofiniteelementsimulationwith weightedandisogeometricB-splineelements(cf.thebooks[65,34]foracomprehensive treatmentofthesetechniques). NotationandConventions Throughoutthebook,linearcombinationsofB-splines, (cid:2) p= c bn , k k,ξ k play thefundamental role. Theletter“b”isacanonical choice for basisfunctions, and “c” stands for coefficients or control points. For simplicity, we will often suppress de- pendencies on parameters if they are fixed or implicitly understood while discussing a

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.