ebook img

Approximation and Complexity in Numerical Optimization: Continuous and Discrete Problems PDF

597 Pages·2000·17.87 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Approximation and Complexity in Numerical Optimization: Continuous and Discrete Problems

Approximation and Complexity in Numerical Optimization Nonconvex Optimization and Its Applications Volume 42 Managing Editor: Panos Pardalos University ofF lorida, U.S.A. Advisory Board: J.R. Birge University ofM ichigan, U.S.A. Ding-ZhuDu University ofM innesota, U.S.A. C. A. Floudas Princeton University, U.S.A. J.Mockus Lithuanian Academy of Sciences, Lithuania H. D. Sherali Virginia Polytechnic Institute and State University, U.S.A. G. Stavroulakis Technical University Braunschweig, Germany The titles published in this series are listed at the end o/this volume. Approximation and Complexity in Numerical Optimization Continuous and Discrete Problems Edited by Panos M. Pardalos Center for Applied Optimization, Department of Industrial and Systems Engineering, University of Florida, U.S.A. SPRINGER-SCIENCE+BUSINESS MEDIA, B.V. A c.l.P. Catalogue record for this book is available from the Library of Congress. ISBN 978-1-4419-4829-8 ISBN 978-1-4757-3145-3 (eBook) DOI 10.1007/978-1-4757-3145-3 Printed an acid-free paper AII Rights Reserved © 2000 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 2000 Softcover reprint ofthe hardcover lst edition 2000 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, incIuding photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. Contents Preface ......................................................................... xv Navigating Graph Surfaces .................................................. 1 J. Abello, S. Krishnan 1. Introduction ................................................................. 2 2. What is a hierarchical graph surface? ......................................... 2 3. Problem statement ........................................................... 3 4. Navigating ................................................................... 4 5. From multi-digraphs to surfaces .............................................. 7 6. Triangulation and simplification algorithm .................................... 9 7. Visual navigation of graph surfaces .......................................... 11 8. Applications and open questions ............................................. 13 9. Conclusions ................................................................. 14 References ...................................................................... 15 The Steiner Ratio of Lp-planes ............................................. 17 J. Albrecht, D. Cieslik 1. Introduction ................................................................. 18 2. Well - known bounds and exact values ....................................... 20 3. Better upper bounds ......................................................... 22 4. Sets with four elements ...................................................... 23 5. The Steiner ratio of dual planes .............................................. 26 6. Concluding remarks .......................................................... 27 References ...................................................................... 29 Hamiltonian Cycle Problem via Markov Chains and Min-type Approaches .................................................. 31 M. Andramonov, J. Filar, P. Pardalos, A. Rubinov 1. Introduction ................................................................. 32 2. Formulation ................................................................. 32 3. Numerical experiments ....................................................... 36 4. Appendix 1: An embedding of the Hep in a Markov decision process ........ 38 5. Appendix 2: Global minimization via min type functions ..................... 42 References ...................................................................... 44 vi Solving Large Scale Uncapacitated Facility Location Problems ........................................................... 48 F. Barahona, F. Chudak 1. Introduction ................................................................. 48 2. Solving the linear programming relaxation ................................... 50 3. Randomized rounding ........................................................ 53 4. A new heuristic for the UFLP ................................................ 54 5. Computational experiments .................................................. 54 References ...................................................................... 61 A Branch - and - Bound Procedure for the Largest Clique in a Graph .................................................. 63 E. R. Barnes 1. Introduction ................................................................. 63 2. Upper and lower bounds ..................................................... 64 3. Sharper bounds .............................................................. 69 4. The branch - and - bound procedure ......................................... 73 References ...................................................................... 76 A New "Annealed" Heuristic for the Maximum Clique Problem .................................................. 78 1. M. Bomze, M. Budinich, M. Pelillo and C. Rossi 1. Introduction ................................................................. 79 2. Evolution towards the maximum clique and the annealing parameter ............................................................ 79 3. A prototypical example ...................................................... 84 4. The annealed replication heuristic ............................................ 86 5. Experimental results ......................................................... 88 6. Conclusions .................................................................. 92 References ...................................................................... 93 Inapproximability of some Geometric and Quadratic Optimization Problems ....................... 96 A. Brieden, P. Gritzmann, V. Klee 1. Introduction ................................................................ 97 2. Definitions and statements of main results ................................... 98 3. Upper bounds .............................................................. 100 4. From logic to geometry ..................................................... 102 vii 5. From [-1, l]-PARMAX to [O,l]-PARMAX ................................... 107 6. From [0, l]-PARMAX to SIMPLEX-WIDTH ................................... 109 References ..................................................................... 114 Convergence Rate of the P-Algorithm for Optimization of Continious Functions .................................... 116 J. M. Calvin 1. Introduction ................................................................ 116 2. Notation and background ................................................... 119 3. Point process of observations ...................................... ~ ......... 120 4. Asymptotic normalized error ................................................ 126 References ..................................................................... 128 Application of Semidefinite Programming to Circuit Partitioning ........................................................ 130 C. C. Choi, Y. Ye 1. Introduction ................................................................ 130 2. Translating hypergraph ....................................•................ 132 3. SDP method ................................................................ 133 4. Rank reduction ............................................................. 134 5. Test result .................................................................. 135 6. Final remarks ................................................................ 136 References ..................................................................... 136 Combinatorial Problems Arising in Deregulated Electrical Power Industry: Survey and Future Directions .............. 138 D. Cook, G. Hicks, V. Faber, M. V. Marathe, A. Srinivasan, Y. J. Sussmann, H. Thornquist 1. Introduction: the changing face of power industry ........................... 139 2. Problem formulations ....................................................... 142 3. Formulating electric flow problems .......................................... 143 4. Preliminary definitions ............................................ " ., ...... 143 5. Related work ............................................................... 148 6. Hardness results ............................................................ 149 7. Easiness results: exact and approximation algorithms ....................... 150 8. Experimental analysis ....................................................... 151 9. Current work ............................................................... 154 10. Conclusions ................................................................ 154 References ..................................................................... 157 viii On Approximating a Scheduling Problem ............................... 163 P. Crescenzi, X. Deng, C. H. Papadimitriou 1. Introduction ................................................................ 164 2. Inapproximability ........................................................... 166 3. Approximation algorithms .................................................. 168 References ..................................................................... 173 Models and Solution for On-Demand Data Delivery Problems .......................................................... 175 M. C. Ferris, R. R.Meyer 1. Introduction ................................................................ 176 2. Skyscraper delivery techniques .............................................. 177 3. MIP model and solution .................................................... 180 4. Conclusion .................................................................. 186 References ..................................................................... 187 Complexity and Experimental Evaluation of Primal-Dual Shortest Path Tree Algorithms ............................ 189 P. Festa, R. Cerulli, G. Raiconi 1. Mathematical model ........................................................ 190 2. A generic shortest path algorithm ........ '" ................................ 191 3. Implementations of the generic algorithm ................................... 192 4. Auction algorithms ......................................................... 195 5. Computational results ...................................................... 201 6. Conclusions ................................................................. 205 7. Appendix ................................................................... 205 Acknowledgement ............................................................ 207 References ..................................................................... 207 Machine Partitioning and Scheduling under Fault-Tolerance Constraints ............................................... 209 D. A. Fotakis, P. G. Spirakis 1. Introduction ................................................................ 210 2. Preliminaries ............................................................... 212 3. Fault-tolerant partition of identical speeds .................................. 217 4. Fault-tolerant partition of related speeds .................................... 221 5. Assignments on identical speed machines .................................... 234 6. Assignments on related speed machines ..................................... 240 ix 7. Open problems ............................................................. 242 References ..................................................................... 243 Finding Optimal Boolean Classifiers ..................................... 245 J. Franco 1. Introduction ................................................................ 246 2. Error analysis ............................................................... 246 3. An example ................................................................. 251 4. Models of data generation and the structure of data ......................... 254 5. What's next? ............................................................... 262 Acknowledgements ........................................................... 263 Appendices .................................................................... 264 A. Details of experiments with k - convex closures ............................. 264 B. Examples of experiments with vine models .................................. 268 C. Program descriptions ....................................................... 274 D. Variograms for truth circles ................................................. 285 E. Variograms for truth sub-hypercubes ........................................ 286 References ..................................................................... 286 Tighter Bounds on the Performance of First Fit Bin Packing ................................................................. 287 M. FiLrer 1. Introduction ................................................................ 287 2. Singular bad instances ...................................................... 288 3. Bad instances for any k == 0 (mod 10) ..................................... 292 4. The general case ............................................................ 295 References ..................................................................... 296 Block Exchange in Graph Partitioning ................................... 298 w. W. Hager, S. C. Park, T. A. Davis 1. Introduction ................................................................ 299 2. Quadratic programming formulation ........................................ 299 3. Numerical illustrations .................................................. ; ... 303 References ..................................................................... 307 On the Efficient Approximability of "HARD" Problems: A Survey ........................................................ 308 H. B. Hunt III, M. V. Marathe, R. E. Steams 1. Introduction ................................................................ 309

Description:
There has been much recent progress in approximation algorithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. In discrete (or combinatorial) optimization many approaches have been developed recently that link the discrete universe to the continuo
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.