Approximating Smallest Containers for Packing Three-dimensional Convex Objects HelmutAlt∗andNadjaScharf† InstituteofComputerScience,FreieUniversita¨tBerlin,Takustr.9, 6 14195Berlin,Germany 1 0 2 January19,2016 n a J 8 1 Abstract ] We investigate the problem of computing a minimal-volume container G forthenon-overlappingpackingofagivensetofthree-dimensionalconvex C objects. AlreadythesimplestversionsoftheproblemareNP-hardsothat . wecannotexpecttofindexactpolynomialtimealgorithms. Wegiveconstant s c ratioapproximationalgorithmsforpackingaxis-parallel(rectangular)cuboids [ undertranslationintoanaxis-parallel(rectangular)cuboidascontainer,for 1 cuboidsunderrigidmotionsintoanaxis-parallelcuboidorintoanarbitrary v convexcontainer,andforpackingconvexpolyhedraunderrigidmotionsinto 5 anaxis-parallelcuboidorarbitraryconvexcontainer. Thisworkgivesthefirst 8 approximabilityresultsforthecomputationofminimalvolumecontainersfor 5 4 theobjectsdescribed. 0 . 1 1 Introduction 0 6 1 Theproblemofefficientlypackingobjectsarisesinalargevarietyofcontexts. Apart : v fromtheobviousones,whereconcreteobjectsneedtobepackedfortransportation i X orstorage,therearemoreabstractones,forexamplecuttingstockorscheduling. Givenasetofobjectsthathavetobecutoutfromthesamematerialtheobjectiveis r a tominimizethewaste,i.e.,placethepiecestobecutoutascloseaspossible. In thecaseofscheduling,alistofjobsisgiven. Eachjobneedsacertainamountof givenresourcesandtheaimistominimizeundercertainconstraintsthisneedof resourcessuchastime,space,ornumberofmachines. Altogether,thissituationcan bedescribedasaproblemofpackinghigh-dimensionalcuboidsintoastripwith ∗[email protected] †[email protected] This research was partially funded by DFG (Deutsche Forschungsgemeinschaft) under grant no.AL253/7-2. 1 boundedsidelengths. So,bothproblemscanbeviewedasagivenlistofobjectsfor whichacontainerofminimalsizeiswanted. In this work, we consider the more general and abstract problem of packing three-dimensionalconvexpolyhedraintoaminimumvolumecontainer. Allvariants of this problem are NP-hard and we will develop constant factor approximation algorithmsforsomeofthem. Theworstcaseconstantfactorsarestillveryhigh,but probablytheywillbemuchlowerforrealisticinputs. Themajoraimofthispaper, however,istoshowtheexistenceofconstantfactorsatall,i.e.,thattheproblems belongtothecomplexityclassAPX. RelatedWork So far, there are only few results about finding containers of minimum volume. Relatedproblemsincludestrippackingandbinpacking. Intwo-dimensionalstrip packingthewidthofastripisgivenandtheobjectsshouldbepackedinorderto minimize the length of the strip used. In three dimensions, the rectangular cross sectionofthestripisfixed. Bin-packingistheproblemwherethecompletecontainer isfixedandtheobjectiveistominimizethenumberofcontainerstopackallobjects. Forbothproblemsusuallyonlytranslationsareallowedtopacktheobjects. Fortwo-dimensionalbinpackingthereexistsanalgorithmwithanasymptotic approximation ratio of 1.405 [3] and Bansal et al. proved that there cannot be an APTAS unless P =NP [2]. For two-dimensional strip packing there exists an AFPTAS [7]. In three dimensions there are algorithms with an asymptotic approximationratioof4.89forbinpacking[9]andanasymptoticapproximation ratioof 3 +εforstrippacking[6]. Thebestknownworstcaseapproximationratio 2 forthree-dimensionalstrippackingis 29 [5]. 4 Fortwodimensions,vonNiederha¨usern[10]gavealgorithmsforpackingrectan- glesorconvexpolygonsinaminimal-arearectangularcontainerwithapproximation ratios 3 and 5 respectively. A recent result shows that packing convex polygons under translation into a minimum-area rectangular or convex container can be approximatedwithratios17.45and27respectively[1]. PARTITIONcanbereducedtoone-dimensionalbinpackingandone-dimen- sionalbinpackingisaspecialcaseofhigherdimensionalbinorstrippacking. If one-dimensional bin packing could be approximated with a ratio smaller than 3, 2 wecouldsolve PARTITION.Therefore,noneofthementionedproblemscanbe approximatedbetterthanwithratio 3 unlessP =NP. PARTITION canalsobe 2 reducedtoourproblemshowingNP-hardness. OurResults Inthisworkwegivethefirstapproximationresultsforpackingthree-dimensional convexobjectsinaminimum-volumecontainer. Forpackingaxis-parallelrectangu- larcuboidsundertranslationintoanaxis-parallelrectangularcuboidasacontainer, weachievea7.25+εapproximation. Ifweallowthecuboidstobepackedunder 2 rigid motions (translation and rotation) then we achieve an approximation ratio of 17.737 for an axis-parallel cuboid as container and an approximation ratio of 29.135foranarbitraryconvexcontainer. Forpackingconvexpolyhedraunderrigid motionsweachieveanapproximationratioof277.59forcomputinganaxis-parallel cuboidascontainerand511.37foraconvexcontainer. 2 Preliminaries and Notation For most algorithms considered here, the input is a set of rectangular boxes B = {b1,b2,...bn}. We denote a box bi in axis-parallel orientation by a tuple of its height, width and depth (hi,wi,di). We denote by hmax = max{hi ∣bi ∈B}, wmax =max{wi ∣bi ∈B}anddmax =max{di ∣bi ∈B}. For points P and Q we denote by PQ the line segment between P and Q of —→ length∣PQ∣. PQdenotesthevectorfromP toQ. Whenwewrite”axis-parallel container”wemean”axis-parallelrectangularcuboidasacontainer”. Weusethe termboxasasynonymforrectangularcuboid. Definition2.1(strippacking). Aninstanceforthestrippackingproblemconsists ofanaxisparallelstripwithalldimensionsfixedexceptforone,andasetofaxis parallelboxes. Calltheopendimensiontheheight. Theaimistopacktheboxes undertranslationintothestripsuchthattheusedheightgetsminimized. Theboxes arenotallowedtooverlap. Definition 2.2 (orthogonal minimal container packing—OMCOP). An instance ofthisproblemisasetofconvexpolyhedra. Theaimistopackthesepolyhedras non-overlappingsuchthattheminimalaxis-parallelcontainerhasminimalvolume. Variantsincludethekindofmotionsallowedorthatmorespecializedobjectsareto bepacked. Thisworkonlyconsidersalgorithmsintwoorthreedimensions. Foreaseof notationwealwaysassumethelowerleft(front)cornerofthecontainertolieinthe origin. V denotestheminimalpossiblevolumeforacontainer. opt ThefollowingalgorithmwasgivenbyvonNiederha¨usern[10]. Itwillbeused 3 laterasasubroutine. ForanexampleseeFigure1. Algorithm1: Input: AlistS ofrectanglesri,denotedbytheirwidthwi andheighthi,a widthforthestripw 1. OrdertherectanglesinS bydecreasingwidth,suchthatifi<j thenwi ≥wj. 2. SplitS insublistsSj ={ri ∈S ∣ 2jw−1 ≥wi > 2wj}forj ≥1. 3. StartwithpackingtherectanglesinS1 ontopofeachotherinthestrip [0,w]×[0,∞). 4. Splittheremainingstripintwosubstripswithwidth w andpackthe 2 rectanglesinS2 oneafteranotherintothesesubstrips. ri ispackedinthe substripwithcurrentminimalheight. 5. AgainsplitthesubstripsintotwoandpackS . Iteratethatprocessuntil 3 everythingispacked. Remark1. Notethatthestripishalffilledwithrectanglesuptothelowerboundary ofthehighestrectanglethattouchestheupperendofthepacking. Otherwise,this rectanglecouldhavebeenplacedlower. Thatmeansthatthestripishalffilledwith rectanglesexceptforapartwithareaatmostw⋅hmax. Remark2. Steps1and2canbedoneinO(nlogn)timewherenisthesizeofS. Ifwestoreallsubstripsinaheight-balancedtreeandsplitastriponlyintwoifit getsused,wecanperformsteps3to5inO(nlogn). half filled Figure1: ResultofAlgorithm1 4 3 Reduction from 3D-OMCOP to Strip Packing In this section we consider the version of OMCOP where the given objects are axis-parallel boxes that are to be packed under translation. The idea behind the reduction of OMCOP to strip packing is to test different base areas for the strip andtoreturntheresultwithminimalvolume. Assumingthatthelowerleftcorner ofthebaseareaislocatedattheorigin,wetesteachpointinasetS asapossible upper right corner for the base area. Testing means that we call a strip packing algorithmwiththegivenboxesandthebaseareaimpliedbythepointofS. S will bedeterminedbyaparameterε: thesmallerε,themoreelementsS contains,the bettertheapproximationratiogets. NotethatforthewidthW ofanoptimalcontainer,thefollowinginequalities opt hold: 1. Wopt ≤ W∑, where W∑ denotes the sum of all widths of the boxes to be packed. Itisanupperboundbecausethewidthofanoptimalcontainerhasto bethesumofwidthofsomeoftheobjects. Otherwisetheycanbepushed togetherreducingthewidthofthecontainerandtherebyitsvolume. 2. Wopt ≥ wmax, where wmax denotes the width of the widest box. Since this boxneedstobepacked,thisisalowerboundforthewidthofthecontainer. The analogous bounds for the depth of an optimal container hold for the same reasons. InthefollowingH ,W andD denotetheheight,widthanddepthof opt opt opt thesameoptimalcontainer. Letε′ = 2(εε+α) foraconstantαdefinedlater. The set S is obtained by dividing the intervals of possible width and depth logarithmically. S ={W∑(1−ε′)i ∣i∈N,W∑(1−ε′)i >wmax}∪{wmax}× {D∑(1−ε′)j ∣j ∈N,D∑(1−ε′)j >dmax}∪{dmax}. ForanexampleforS seeFigure2. Theorem 1. If we use an α-approximation algorithm to pack the boxes under translation into the strips and the set S defined above, we obtain an (α+ε)- approximation for the OMCOP variant where n axis aligned boxes are to be packedundertranslation. ItsruntimeisO(T(n)logε22n)whereT(n)istheruntime oftheα-approximationalgorithmforstrippacking. Proof. There exist a,b ∈ N with W∑(1−ε′)a+1 < Wopt ≤ W∑(1−ε′)a and ′ b+1 ′ b D∑(1−ε ) < Dopt ≤ D∑(1−ε ) . Eventually the boxes will be packed in ′ a ′ b astripwithbaseareaW ×DwithW =W∑(1−ε ) andD=W∑(1−ε ) . Since the extensions of the base area are at least the ones for an optimal container, we obtainapackingwithheightH ≤αHopt. TheassociatedcontainerhasvolumeV 5 D P dmax wmax W P Figure2: ExampleforSetS withε= 3 andα=1.5 4 with V =HWD ′ a ′ b ≤(αHopt)(W∑(1−ε ) )(D∑(1−ε ) ) W D opt opt ≤(αHopt)(1−ε′)(1−ε′) α ≤ (1−ε′)2Vopt α ′ ε ≤ 1−2ε′ =(α+ε)Vopt ,sinceε = 2(ε+α) ThesizeofS is ∣S∣=(⌈log 1 W∑⌉−⌊log 1 wmax⌋+1)(⌈log 1 D∑⌉−⌊log 1 dmax⌋+1) 1−ε′ 1−ε′ 1−ε′ 1−ε′ log2n W∑ =O( ),since ≤n,wherenisthenumberofboxes (−log(1−ε′))2 wmax log2n ′ =O( ),since −log(1−x)≥xforx∈[0,1] andε ∈Θ(ε), ε2 andthereforewegetthedesiredrunningtime. IfweusethealgorithmgivenbyDiedrichetal.[5]topacktheboxesintothe strips,weobtainthefollowingcorollary. Corollary2. Thereexistsa(7.25+ε)-approximationalgorithmforpackingaxis- parallel boxes under translation into a minimal volume axis-parallel box with runningtimepolynomialinboththeinputsizeand 1. ε 4 Algorithms for Variants of OMCOP Inthissection,wewillgivealgorithmsforvariantsofOMCOP.Thebasicideais togetridofthethirddimensionbydividingthesetofobjectsintosetsofobjects 6 withsimilarheightandthenpackingthoseusinganalgorithmfortwo-dimensional boxes. Thesecontainersthengetcutintopieceswithequalbaseareaandthepieces willbestackedontopofeachother. 4.1 PackingCuboidsunderTranslation Even though this algorithm gets outperformed by the construction in the previ- ous section, we state it here as base for the algorithms for the other variants. Algorithm2: Input: SetofaxisparallelboxesB ={b1,...,bn},parameterε,parameterc 1. PartitionB intosubsetsofboxesthathavealmostthesameheight: Bj ={bi ∈B ∣hmax(1−ε)j <hi ≤hmax(1−ε)j−1}. 2. UseAlgorithm1topacktheboxesofeveryBj intoastripwithwidthwmax andheighthmax(1−ε)j−1 consideringthebaseareasoftheboxes. 3. Dividethestripsintopieceswithdepth(c−1)⋅dmax,ignoringthelastpart ofthestripofdepthd . (Partsofboxescontainedinthispartofthestrip max willbecoveredinstep4anyway.) 4. Extendeachpiecetodepthc⋅dmax suchthateveryboxliesentirelyinthe pieceitsfrontliesin. 5. Stackthepiecesontopofeachother. Foranillustrationofsteps3to5seeFigure3. The first step can be done by sorting, so it needs O(n) time. The second step needs time O(nlogn) (see Remark 2). The rest can be done in linear time. ThereforeAlgorithm2runsinO(nlogn)time. d max (b) Pieces obtained from one strip (a)Cutstrip stackedontopofeachother Figure3 7 Theorem3. ForsuitablevaluesofcandεAlgorithm2computesa(√3 23−1≈11.542)- approximationforthevariantofthree-dimensional OMCOPwherenaxisparallel cuboidsarepackedundertranslationinO(nlogn)time. Proof. Let D denote the depth of the strip obtained in step 2 for the boxes in j Bj. Thenwegetbystep3⌈(Dc−j1−)ddmmaaxx⌉pieces. Afterstep4eachpiecehasvolume c⋅dmaxwmaxhmax(1−ε)j−1. ConsiderthetotalvolumeVj ofthepiecesobtained forthesubsetBj: Vj =c⋅dmax⌈ Dj −dmax ⌉wmaxhmax(1−ε)j−1 (c−1)dmax < c (Dj −dmax)wmaxhmax(1−ε)j−1+c⋅dmaxwmaxhmax(1−ε)j−1. c−1 We know from the two-dimensional packing algorithm that the base area of the stripishalffilledwithboxesexceptforthelastpartofdepthd (Remark1),so max (Dj −dmax)wmax ≤2∑bi∈BjAB(bi)whereAB(b)denotesthebaseareaofbox b. Wealsoknowthatforeverybi ∈Bj theinequalityhmax(1−ε)j−1 < 1h−iε holds. Therefore,wegetforthetotalvolumeofthepackingV that ∞ V ≤ ∑( c (Dj −dmax)wmaxhmax(1−ε)j−1+c⋅dmaxwmaxhmax(1−ε)j−1) j=1 c−1 ∞ ≤ ∑⎛ 2c ∑ V (bi)+c⋅wmax⋅dmax⋅hmax(1−ε)j−1⎞ j=1⎝(1−ε)(c−1)bi∈Bj ⎠ ∞ 2c ≤ ∑V (b)+c⋅wmax⋅dmax⋅hmax⋅∑(1−ε)l (1) (1−ε)(c−1)b∈B ·„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„‚„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„„¶ l=0 ·„„„„„„„„„„„„„‚„„„„„„„„„„„„„„¶ ≤Vopt ≤Vopt 2c c ≤( + )Vopt. (2) (1−ε)(c−1) ε ThefactorbeforeV interm(2)isminimizedifthepartialderivativeswithrespect opt √ tocandεare0. Solvingtheresultingsystemofequationswegetc= 3 2+1and √ √ ε= 13(3 4− 3 2+1). Thisgivesanapproximationratioof √3 23−1. 4.2 PackingCuboidsunderRigidMotions Nowweconsiderthevariantof OMCOP wheretheobjectstobepackedareboxes and rigid motions are allowed. We basically use the algorithm stated above but with an extra preprocessing step, namely rotating every box bi ∈ B such that it becomesaxisparallelandhi ≥wi ≥di. ThiscanbedoneinO(n)time. Toprove theperformanceboundofthisalgorithmweneedthefollowinglemma. Lemma4. Ifeverybi ∈B isorientedsuchthathi ≥wi ≥di,then √ hmax⋅wmax⋅dmax ≤ 6⋅Vopt. 8 Proof. Since an optimal container has to contain the box determining h , it max containsalinesegmentoflengthh . Theprojectionofthatlinesegmentonat max leastoneoftheaxeshastohavelengthatleast √1 h . W.l.o.g. letthisaxisbe max 3 thex-axis. Therefore,theoptimalcontainerhasanexpansionofatleast √1 h in max 3 x-direction. Sinceeveryboxishigherthenwide,aboxwithwidthw containsadiskD max with diameter w and so the optimal container does. Observe that D contains max a diametric line segment l which is parallel to the y-z-plane. Consequently, the projectionoflandthereforetheoneofthewholeboxonthey-axisoronthez-axis hasalengthofatleast √1 w . W.l.o.g. letthisbethey-axis. max 2 Aboxwithdepthd containsaspherewithdiameterd . Theprojectionof max max thissphereonanyaxishaslengthatleastd . max Summarizing,eachoptimalboxhasvolumeatleast √1 hmax⋅wmax⋅dmax 6 Observethateveryargumentleadingtoinequality(1)stillholdsforthisvari- ant of the algorithm. Using Lemma 4 to estimate hmax ⋅wmax ⋅dmax we get an approximationfactorof √ 2c c⋅ 6 + . (1−ε)(c−1) ε Minimizingthisexpressionasbeforeyieldsthefollowingtheorem. Theorem5. Thegivenalgorithmcomputesa17.738-approximationforthevariant of three-dimensional OMCOP where n axis parallel cuboids are packed under rigidmotionsinO(nlogn)time. ConvexContainer Ifweallowaconvexcontainerinsteadofanorthogonalcontainer,wecanusethe samealgorithmbutadapttheanalysis. Theargumentsleadingtoinequality(1)still holdsincetheyonlyusethetotalvolumeoftheboxesasestimateforthevolumeof anoptimalcontainer. Toestimatehmax⋅wmax⋅dmax,weusethefollowinglemma. NotethatV heredenotesthevolumeofaminimalconvexcontainerinsteadofan opt axisparallelcontainer. Lemma6. Ifeverybi ∈B isorientedsuchthathi ≥wi ≥di,then hmax⋅wmax⋅dmax ≤6⋅Vopt. Proof. Considerthelinesegment,diskandspherefromtheproofofLemma4. The linesegmenthaslengthh . Thediskwithdiameterw containsalinesegment max max of length w that is perpendicular to the first line segment. The sphere with max diameterd containsalinesegmentoflengthd thatisperpendiculartothe max max firsttwolinesegments. Itiswellknown(see,e.g.,Lemma6from[8])thattheconvex hullofthesethreelinesegmentshasavolumeofatleast 1h w d . 6 max max max 9 Thisleadswithinequality(1)tothefollowingapproximationratio: 2c c⋅6 + . (1−ε)(c−1) ε Minimizingthistermasbeforeyieldsthefollowingtheorem. Theorem7. Usingthealgorithmdescribedinsection4.2wegeta29.135-approxi- mationforpackingnaxisparallelboxesunderrigidmotionsintoasmallest-volume convexcontainerintimeO(nlogn). 4.3 PackingConvexPolyhedraunderRigidMotions Weusethealgorithmfromtheprevioussectionstopackconvexpolyhedraunder rigid motions into an axis-parallel box of minimal volume. To do so, we add anotherpreprocessingstepwherewecomputeaboundingboxforeverypolyhedron accordingtothefollowinglemma. Wethenpacktheseboxeswiththealgorithm discussedintheprevioussection. Lemma8. ThereisaboxB foreveryconvexpolyhedronK inRn thatcontainsK suchthat V(B)≤n!V(K). B canbecomputedinO(n⋅m2)time,wheremisthenumberofverticesofK. Proofbyinductionovern. Intwodimensions,theminimalenclosingrectanglehas atmosttwicetheareaofthecontainedpolygon. Inhigherdimensionsn,letP,QbetwopointsofK withmaximumdistance ′ and ∣PQ∣ = l. Let πp be the hyperplane normal to PQ in the point P. Let K be the orthogonal projection of K onto π . By the inductive hypothesis there is a p ′ ′ (n−1)-dimensionalboxB containingK forwhich ′ ′ ′ ′ V (B )≤(n−1)!V (K ) ′ whereV denotesthe(n−1)-dimensionalvolume. ThenK iscontainedinthebox ′ B withbaseB andheightl. ′ ′ ′ ′ V(B)=lV (B )≤l(n−1)!V (K ) ′ It is well known (see e.g. [8]) that for any convex body K, its projection K on somehyperplaneπP,andalinesegmentlperpendiculartoπP,itholds: V (K)≥ 1 ⋅l⋅V′(K′). Hence,wegetforthevolumeofB: n V(B)≤n!V(K) B can be computed by testing every pair of vertices to find P and Q that have maximal distance. This takes O(m2) time. Then K gets projected on a plane perpendiculartoPQ. ThisispossibleinO(m)time. Thenweproceedrecursively withtheprojectionofK. IntotalweneedO(n⋅m2)time. 10