ebook img

Approximating NP-hard Problems Efficient Algorithms and their Limits PDF

314 Pages·2009·2.41 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Approximating NP-hard Problems Efficient Algorithms and their Limits

Approximating NP-hard Problems Efficient Algorithms and their Limits Prasad Raghavendra A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2009 Program Authorized to Offer Degree: Computer Science and Engineering University of Washington Graduate School This is to certify that I have examined this copy of a doctoral dissertation by Prasad Raghavendra and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Chair of the Supervisory Committee: Venkatesan Guruswami Reading Committee: Venkatesan Guruswami Paul Beame James R Lee Date: In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of this dissertation is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for copying or reproduction of this dissertation may be referred to Proquest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346, 1-800-521-0600, to whom the author has granted “the right to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed copies of the manuscript made from microform.” Signature Date University of Washington Abstract Approximating NP-hard Problems Efficient Algorithms and their Limits Prasad Raghavendra Chair of the Supervisory Committee: Associate Professor Venkatesan Guruswami Computer Science and Engineering Most combinatorial optimization problems are NP-hard to solve optimally. A natural approach to cope with this intractability is to design an “approximation algorithm” – an efficient algorithm that is guaranteed to produce a good approximation to the optimum solution. The last two decades has witnessed tremendous developments in the design of approximation algorithms mostly fueled by convex optimization techniques such as linear or semidefinite programming. Inthisthesis,wepresentalgorithmicandlowerboundresultsthatcharacterizethepower and limitations of these techniques on large classes of combinatorial optimization problems. The thesis identifies a specific simple semidefinite program and demonstrates the following: – Thissemidefiniteprogramyieldstheoptimalapproximationtoeveryprobleminoneof the large classes such as constraint satisfaction problems (CSP), metric labeling prob- lems and ordering constraint satisfaction problems under the Unique Games Con- jecture (UGC). To show this, we exhibit a general black-box reduction from hard instances to a linear/semidefinite program to correspondinghardness results based on the UGC. Not only does this confirm a widely suspected connection, it settles the approximability of classic optimization problems such as CSPs, Multiway Cut and Maximum Acyclic Subgraph under UGC. – The thesis presents a generic algorithm for constraint satisfaction problems (CSP) based on this semidefinite program. Irrespective of the truth of UGC, this generic algorithm is guaranteed to obtain an approximation at least as good as all known algorithms for specific CSPs. – Independent of the truth of UGC, the approximation obtained by this semidefinite program cannot be improved by any convex relaxation that is obtained by including 1 any valid constraints on at most O(2(loglogN)4) vectors. TABLE OF CONTENTS Page List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi Chapter 1: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Relaxation and Rounding Methodology . . . . . . . . . . . . . . . . . . . . . 5 1.3 Relaxation Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.4 Understanding the Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.5 Integrality Gaps vs Hardness Results . . . . . . . . . . . . . . . . . . . . . . . 10 1.6 Brief Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chapter 2: Preliminaries And Organization of Thesis . . . . . . . . . . . . . . . . 13 2.1 Relaxation and Rounding: Examples . . . . . . . . . . . . . . . . . . . . . . . 13 2.2 Definitions and Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3 Problem Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4 Generalized Constraint Satisfaction Problems . . . . . . . . . . . . . . . . . . 22 2.5 Label Cover and Unique Games . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.6 Results and Organization of thesis . . . . . . . . . . . . . . . . . . . . . . . . 25 Chapter 3: Mathematical Tools. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.2 Probability Spaces and Random Variables . . . . . . . . . . . . . . . . . . . . 31 3.3 Harmonic Analysis of Boolean Functions . . . . . . . . . . . . . . . . . . . . . 32 3.4 Functions on Product Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.5 Gaussian Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.6 Invariance Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.7 Noise Stability Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 i Part I: Algorithmic Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 48 Chapter 4: Linear and Semidefinite Programming Relaxations . . . . . . . . . . . 49 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4.2 Comparing Relaxations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.3 Local Distributions and Consistency . . . . . . . . . . . . . . . . . . . . . . . 52 4.4 A Simple LP Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.5 A Simple SDP Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.6 Comparison with Relaxations in Literature . . . . . . . . . . . . . . . . . . . 59 4.7 Stronger Relaxations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.8 Robustness and Smoothing of the LC relaxation . . . . . . . . . . . . . . . . . 65 4.9 Robustness of LH and SA relaxations . . . . . . . . . . . . . . . . . . . . . . 70 r r Chapter 5: A Generic Rounding Scheme. . . . . . . . . . . . . . . . . . . . . . . . 77 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5.2 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.3 Proof Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.4 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.5 Rounding General CSPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Part II: The Unique Games Barrier . . . . . . . . . . . . . . . . . . . . . . . . 88 Chapter 6: Dictatorship Tests, Rounding Schemes and Unique Games Conjecture 89 6.1 Dictatorship Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6.2 Emerging Connections (history) . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.3 From Dictatorship Tests to UG-hardness Results . . . . . . . . . . . . . . . . 94 6.4 From Integrality Gaps to Dictatorship Tests . . . . . . . . . . . . . . . . . . . 98 6.5 Formal Proof of Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.6 Dictatorship Tests and Rounding Schemes . . . . . . . . . . . . . . . . . . . . 108 6.7 From UG-hardness to Integrality Gaps . . . . . . . . . . . . . . . . . . . . . . 112 6.8 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 Chapter 7: General Constraint Satisfaction Problems . . . . . . . . . . . . . . . . 119 7.1 Results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 7.3 From Integrality Gaps to Dictatorship Tests . . . . . . . . . . . . . . . . . . . 126 7.4 Soundness of Dictatorship Test DICTε . . . . . . . . . . . . . . . . . . . . . 128 V,µ ii

Description:
to Proquest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346 instances to a linear/semidefinite program to corresponding hardness results based on .. Following year, I enjoyed the summer collaborating with Yossi Azar, Uriel .. methods (see Alizadeh [2], Nemirovsky et al.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.