ebook img

Approximate Quantum Markov Chains PDF

124 Pages·2018·1.84 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Approximate Quantum Markov Chains

SPRINGER BRIEFS IN MATHEMATICAL PHYSICS 28 David Sutter Approximate Quantum Markov Chains 123 SpringerBriefs in Mathematical Physics Volume 28 Series editors Nathanaël Berestycki, Cambridge, UK Mihalis Dafermos, Princeton, USA Tohru Eguchi, Tokyo, Japan Atsuo Kuniba, Tokyo, Japan Matilde Marcolli, Pasadena, USA Bruno Nachtergaele, Davis, USA SpringerBriefs are characterized in general by their size (50–125 pages) and fast production time (2–3 months compared to 6 months for a monograph). Briefsareavailableinprintbutareintendedasaprimarilyelectronicpublicationto be included in Springer’s e-book package. Typical works might include: (cid:129) An extended survey of a field (cid:129) A link between new research papers published in journal articles (cid:129) Apresentation ofcoreconceptsthatdoctoral students mustunderstand inorder to make independent contributions (cid:129) Lecture notes making a specialist topic accessible for non-specialist readers. SpringerBriefsinMathematicalPhysicsshowcase,inacompactformat,topicsof current relevance in the field of mathematical physics. Published titles will encompassallareasoftheoreticalandmathematicalphysics.Thisseriesisintended for mathematicians, physicists, and other scientists, as well as doctoral students in related areas. More information about this series at http://www.springer.com/series/11953 David Sutter Approximate Quantum Markov Chains 123 DavidSutter Institute for Theoretical Physics ETHZurich Zürich Switzerland ISSN 2197-1757 ISSN 2197-1765 (electronic) SpringerBriefs inMathematical Physics ISBN978-3-319-78731-2 ISBN978-3-319-78732-9 (eBook) https://doi.org/10.1007/978-3-319-78732-9 LibraryofCongressControlNumber:2018936657 ©TheAuthor(s)2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAG partofSpringerNature Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Acknowledgements First and foremost, I would like to thank my advisor Renato Renner for his encouragement and support. His never-ending enthusiasm, optimism, and persis- tencyindoingresearchaswellashisprecisioninthoughtandcommunicationwere highlyinspiringandclearlysharpenedmymind.Hisguidanceduringthelastyears was outstanding. I was entirely free to work on what I like most, at the same time alwaysknowingthathewouldimmediatelyinterruptincaseIdriftofftoanalyzing meaningless problems. IamespeciallygratefultoJürgFröhlichforintroducingmetotheexcitingfield of mathematical physics and for carefully listening to my oftentimes vague new ideas.Jürg’simmenseknowledge about physicsisextraordinaryandI enormously enjoyed our regular meetings. Furthermore, my sincere thanks go to Emre Telatar for investing his time in studying my work and for being my co-examiner. I also would like to thank Manfred Sigrist for interesting discussions in the early morn- ings at the institute and for representing the physics department at my defense. During the last couple of years, I was extremely lucky to collaborate with various brilliant people including Mario Berta, Frédéric Dupuis, Omar Fawzi, Aram W. Harrow, Hamed Hassani, Raban Iten, Marius Junge, John Lygeros, PeymanMohajerinEsfahani,RenatoRenner,JosephM.Renes,VolkherB.Scholz, Tobias Sutter, Marco Tomamichel, Mark M. Wilde, and Andreas Winter. I would like to thank all of them for their patience and effort to work with me. IamverygratefultoallmembersoftheInstituteforTheoreticalPhysicsatETH Zurich and in particular the Quantum Information Theory Group people for their support and the friendly atmosphere. It was an exciting and truly wonderful time. Finally and most importantly, I would like to thank my twin brother, my sister, and my parents for their constant support and encouragement. Zürich, Switzerland David Sutter v Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Classical Markov Chains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Robustness of Classical Markov Chains . . . . . . . . . . . . . . 3 1.2 Quantum Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Robustness of Quantum Markov Chains . . . . . . . . . . . . . . 5 1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 Preliminaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.1 Notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Schatten Norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.3 Functions on Hermitian Operators . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4 Quantum Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.5 Entropy Measures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.5.1 Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.5.2 Relative Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.5.3 Measured Relative Entropy . . . . . . . . . . . . . . . . . . . . . . . 31 2.5.4 Rényi Relative Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . 38 2.6 Background and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 40 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3 Tools for Non-commuting Operators . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1 Pinching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.1.1 Spectral Pinching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.1.2 Smooth Spectral Pinching . . . . . . . . . . . . . . . . . . . . . . . . 50 3.1.3 Asymptotic Spectral Pinching. . . . . . . . . . . . . . . . . . . . . . 52 3.2 Complex Interpolation Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.3 Background and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 58 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 vii viii Contents 4 Multivariate Trace Inequalities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.2 Multivariate Araki-Lieb-Thirring Inequality . . . . . . . . . . . . . . . . . 65 4.3 Multivariate Golden-Thompson Inequality . . . . . . . . . . . . . . . . . . 66 4.4 Multivariate Logarithmic Trace Inequality . . . . . . . . . . . . . . . . . . 70 4.5 Background and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 72 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5 Approximate Quantum Markov Chains . . . . . . . . . . . . . . . . . . . . . . 75 5.1 Quantum Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2 Sufficient Criterion for Approximate Recoverability . . . . . . . . . . . 79 5.2.1 Approximate Markov Chains are not Necessarily Close to Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.3 Necessary Criterion for Approximate Recoverability. . . . . . . . . . . 82 5.3.1 Tightness of the Necessary Criterion. . . . . . . . . . . . . . . . . 86 5.4 Strengthened Entropy Inequalities . . . . . . . . . . . . . . . . . . . . . . . . 89 5.4.1 Data Processing Inequality . . . . . . . . . . . . . . . . . . . . . . . . 89 5.4.2 Concavity of Conditional Entropy. . . . . . . . . . . . . . . . . . . 94 5.4.3 Joint Convexity of Relative Entropy . . . . . . . . . . . . . . . . . 95 5.5 Background and Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 96 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Appendix A: A Large Conditional Mutual Information Does Not Imply Bad Recovery.. .... .... .... .... .... ..... .... 101 Appendix B: Example Showing the Optimality of the K -Term . .... 105 max Appendix C: Solutions to Exercises. .... .... .... .... .... ..... .... 109 Index .... .... .... .... .... ..... .... .... .... .... .... ..... .... 117 Chapter 1 Introduction Markov chains are named after the Russian mathematician Andrei Markov (1856–1922),whointroducedthemin1907.Supposewehaveasequenceofrandom variables (Xn)n≥1. The simplest model is the case where the random variables are assumedtobepairwiseindependent.Forthisscenariomanyniceresults,suchasthe lawoflargenumberorthecentrallimittheorem,areknown.Atthesametimethe pairwiseindependenceassumptionmakesthemodelratherrestrictive. Markov’sideawastoconsideramoregeneraldependencestructurethathowever isstillsimpleenoughthatitcanbeanalyzedrigorously.Informally,hisideawasto assumethattherandomvariables(Xn)n≥1 areorderedinaveryspecificway.1 This orderingimpliesthatalltheinformationthattherandomvariables(X1,··· ,Xk−1) couldhaveabout Xk foranyk >1iscontainedin Xk−1.Moreprecisely,werequire thatthecollectiveentirepast(X1,...,Xk−2)isindependentofthecollectiveentire future (Xk,...) conditioned on the present Xk−1. This model has the advantage thatinordertodescribe Xk weonlyneedtoremember Xk−1 andcanforgetabout the past (X1,...,Xk−2). This makes the model simple enough that we can prove precisepropertiesanddescribeitsbehaviorforlargevaluesofn.Atthesametime, themodelisconsiderablymoregeneralthanthepairwiseindependenceassumption whichmakesitsuitableformanysituations(see,e.g.,[1–4]). Markovchainsareintensivelystudiedandhavebeengeneralizedtothequantum mechanicalsetup[5]whererandomvariablesarereplacedbydensityoperatorsona Hilbertspace.2Naturalquestionsthatariseare: WhatarethemaindifferencesbetweenclassicalandquantumMarkovchains? What do we know about sequences of random variables that approximately form a Markov chain? Do they approximately behave as (exact) Markov chains? 1Wethensay(Xn)n≥1formsaMarkovchaininorderX1↔ X2↔ X3↔... . 2InSect.1.2andinparticularinSect.5.1weintroducetheconceptofaquantumMarkovchain. ©TheAuthor(s)2018 1 D.Sutter,ApproximateQuantumMarkovChains,SpringerBriefsinMathematical Physics,https://doi.org/10.1007/978-3-319-78732-9_1 2 1 Introduction Thisbookwillanswerthesequestions.Wewillfirstintroducethereadertoquan- tumMarkovchainsandexplainhowtodefinearobustversionofthisconceptthat willbecalledapproximatequantumMarkovchains. Intheliteraturethereexiststheterm“shortMarkovchains”whichshoulddistin- guishtheMarkovchainbetweenthreerandomvariablesfrominfinitechains.Since weonlyconsiderMarkovchainsdefinedforthreerandomvariablesinthisbookwe droptheterm“short”. 1.1 ClassicalMarkovChains ThreerandomvariablesX,Y,Z withjointdistributionP formaMarkovchainin XYZ order X ↔Y ↔ Z if X and Z areindependentconditionedonY.Inmathematical termsthiscanbeexpressedas PXYZ isaMarkovchain ⇐⇒ PXZ|Y = PX|YPZ|Y , (1.1) where PX|Y denotes the probability distribution of X conditioned on Y. Bayes’ theorem directly implies that the right-hand side of (1.1) can be rewritten as PXYZ = PXYPZ|Y. Operationally, the Markov chain condition tells us that all the informationthepair(X,Y)hasabout Z iscontainedinY.Inotherwords,thereis noneedtoremember X inordertodetermine Z ifwealreadyknowY.Supposewe loosetherandomvariable Z.TheMarkovchainconditionensuresthatitispossible toreconstruct Z byonlyactingonY withastochasticmap.3 Moreprecisely, PXYZ isaMarkovchain ⇐⇒ ∃ stochasticmatrixWZ|Y suchthatPXYZ = PXYWZ|Y. (1.2) Bayes’theoremdirectlyimpliesthatWZ|Y canbealwayschosenasWZ|Y = PZ|Y.A thirdcharacterizationof P beingaMarkovchainisthattheconditionalmutual XYZ informationvanishes,i.e., P isaMarkovchain ⇐⇒ I(X : Z|Y) =0, (1.3) XYZ P where I(X : Z|Y) := H(XY) +H(YZ) −H(XYZ) −H(Y) (1.4) P P P P P (cid:2) denotes the conditional mutual information and H(X) :=− P (x) P x∈X X logP (x)istheShannonentropy. X 3Thereconstructionreferstoastochasticallyindistinguishablecopywhichmeansthatifwedenote thereconstructedrandomvariableby Z(cid:8) werequirethattheprobabilitylawof(X,Y,Z(cid:8))isthe sameas(X,Y,Z).

Description:
This book is an introduction to quantum Markov chains and explains how this concept is connected to the question of how well a lost quantum mechanical system can be recovered from a correlated subsystem. To achieve this goal, we strengthen the data-processing inequality such that it reveals a statem
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.