ebook img

Approximate methods for dynamic portfolio allocation under transaction costs PDF

245 Pages·2017·4.7 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Approximate methods for dynamic portfolio allocation under transaction costs

WWeesstteerrnn UUnniivveerrssiittyy SScchhoollaarrsshhiipp@@WWeesstteerrnn Electronic Thesis and Dissertation Repository 9-7-2012 12:00 AM AApppprrooxxiimmaattee mmeetthhooddss ffoorr ddyynnaammiicc ppoorrttffoolliioo aallllooccaattiioonn uunnddeerr ttrraannssaaccttiioonn ccoossttss Nabeel Butt, The University of Western Ontario Supervisor: Dr Matt Davison, The University of Western Ontario Co-Supervisor: Dr Greg Reid, The University of Western Ontario A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree in Applied Mathematics © Nabeel Butt 2012 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Control Theory Commons, Dynamic Systems Commons, Numerical Analysis and Computation Commons, Portfolio and Security Analysis Commons, Probability Commons, and the Statistical Models Commons RReeccoommmmeennddeedd CCiittaattiioonn Butt, Nabeel, "Approximate methods for dynamic portfolio allocation under transaction costs" (2012). Electronic Thesis and Dissertation Repository. 932. https://ir.lib.uwo.ca/etd/932 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. APPROXIMATE METHODS FOR DYNAMIC PORTFOLIO ALLOCATION UNDER TRANSACTION COSTS (Spine title: Dynamic Portfolio Allocation under transaction costs ) (Thesis format: Monograph) by Nabeel Butt Graduate Program in Applied Mathematics A thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada (cid:13)c Nabeel Butt 2012 THE UNIVERSITY OF WESTERN ONTARIO School of Graduate and Postdoctoral Studies CERTIFICATE OF EXAMINATION Supervisor: Examiners: ..................... Dr. MattDavison ..................... Dr. AdamMetzler JointSupervisor: ..................... ..................... Dr. IanMcleod Dr. GregReid SupervisoryCommittee: ..................... Dr. MattThompson ..................... Dr. AdamMetzler ..................... Dr. MarkReesor Thethesisby Nabeel Butt entitled: APPROXIMATEMETHODSFORDYNAMICPORTFOLIOALLOCATIONUNDER TRANSACTIONCOSTS isacceptedinpartialfulfillmentofthe requirementsforthedegreeof DoctorofPhilosophy ............... .............................. Date ChairoftheThesisExaminationBoard ii Acknowledgments I would like to start by expressing my deepest gratitude towards God for all His help and support all along. Next I thank my beloved parents for their efforts in helping me get the best education possible. I would also like to thank all my thesis examiners for their insightful commentsleadingtoamuchimprovedversionofthethesis. MyPhDyearsatUWOweresomeofthebestyearsofmylife. MyprimaryPhdsupervisor Dr Matt Davison was an ever present support and a great source of guidance. Matt was very helpful in all our meetings and gave me complete freedom to pursue novel ideas. It was Matt whoinitiallydirectedmetowardsaMITACS2008industrialproblemsolvingworkshop. Many of the ideas in the thesis were inspired by different aspects of the hedge fund problem the workshop involved. My co-supervisor Dr Greg Reid was a great source of advice and sparked my interest in Homotopy methods in applied mathematics. Greg also helped me develop an interestinexperimentalmathematics. Last but not the least I would like to thank my imaginary friend Mathematica for all its support! :-) iii Abstract The thesisprovides simpleand intuitivelattice based algorithmsfor solvingdynamic port- folio allocation problems under transaction costs. The early part of the thesis concentrates upon developing a toolbox based on discrete probability approximations. The discrete ap- proximations are shown to provide a reasonable approximation for most popular transaction cost models in the academic literature. The tool, once forged, is implemented in the powerful Mathematica based parallel computing environment. In the second part of the thesis we pro- vide applications of our framework to real world problems. We show re-balancing portfolios is more valuable in an investment environment where the growth and volatility of risky assets is non-constant over the time horizon. We also provide a framework for modeling random transaction costs and compute the loss of expected utility of an investor faced with random transaction costs. Approximate methods are provided to solve portfolio constraints such as portfolio insurance and draw-down. Finally, we also highlight a lattice based framework for pairstrading. Keywords: PortfolioAllocation,Transactioncosts iv Contents CertificateofExamination ii Acknowlegements iii Abstract iv ListofFigures x ListofTables xxix ListofAppendices xxxii 1 Aquantitativeanalysisofcontinuoustimeportfoliostrategies 1 2 Literaturereviewandnotations 4 2.1 Anoverviewofdynamicportfoliotheory . . . . . . . . . . . . . . . . . . . . . 4 2.2 Briefreviewoftransactioncostliterature . . . . . . . . . . . . . . . . . . . . . 8 2.3 Towardsdiscretetimemodeling . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.4 Notationusedinthethesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 Latticeframeworkofthethesisusingnotationsabove . . . . . . . . . . . . . . 14 2.5.1 Bermudanputoptionpricingintheframework . . . . . . . . . . . . . 14 2.5.2 Growthratemaximizationportfolioproblemintheframework . . . . . 15 3 Introduction to discrete probability approximation and sketch of modeling ap- proach 19 3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.2 Analogybetweendiscretetimeandcontinuoustimeportfoliotheory . . . . . . 20 3.3 Bellmanprinciplefordiscretetimefinitehorizonproblems . . . . . . . . . . . 21 3.4 Utilityofterminalwealth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.5 Anillustrativeexample: deformationsolutionforadynamicinvestor . . . . . 22 3.6 Transferofwealth,transactioncoststructureandno-transactionregion . . . . 24 3.6.1 Transactioncostmodels . . . . . . . . . . . . . . . . . . . . . . . . . 25 Transfer of wealth between risky assets and trading cost proportional totheamounttransferred . . . . . . . . . . . . . . . . . . . 25 Risk-free asset banker for buying/selling risky assets and trading cost proportionaltotheamounttraded . . . . . . . . . . . . . . . 28 v Buying/sellingriskyassetsandtradingcostproportionaltotheamount ofwealth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.7 Asynopsisofapproximatelatticemethods . . . . . . . . . . . . . . . . . . . 31 3.8 Ondiscreteprobabilityapproximations . . . . . . . . . . . . . . . . . . . . . 33 3.8.1 Theexampleofasimplemodel . . . . . . . . . . . . . . . . . . . . . . 33 3.8.2 Binomialdiscreteprobabilityapproximation . . . . . . . . . . . . . . 36 3.8.3 Overviewofbasicdiscreteprobabilityapproximationconstructionpro- cedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Treein1-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Treein2-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Treein3-D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Generalframeworkforadiscreteprobabilityapproximationinℵ-D . . 40 3.9 Onthephilosophyofprobabilitydeformationcontinuation . . . . . . . . . . . 42 3.10 Towardsrobustandefficientlatticealgorithms . . . . . . . . . . . . . . . . . . 46 3.11 Analysisofcontinuoustimedynamictradingstrategies . . . . . . . . . . . . . 51 3.11.1 Riskanalysisofstrategies . . . . . . . . . . . . . . . . . . . . . . . . 51 3.11.2 Onthevalueofre-balancing . . . . . . . . . . . . . . . . . . . . . . . 53 4 OverviewofMathematicaImplementations 59 4.1 Treeconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.1.1 Moment/Cross-momentmatching . . . . . . . . . . . . . . . . . . . . 60 4.1.2 Treesviamoregeneralprobabilitydeformation . . . . . . . . . . . . . 60 4.2 Dynamicprogrammingcomputations . . . . . . . . . . . . . . . . . . . . . . 60 4.2.1 ParallelcomputinginMathematica . . . . . . . . . . . . . . . . . . . 60 4.2.2 Recursionviadynamicprogramming . . . . . . . . . . . . . . . . . . 61 4.2.3 Analysisoftheoptimalcontrollaw . . . . . . . . . . . . . . . . . . . . 62 5 Probabilitydeformationcontinuationschemes 64 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 5.2 Probabilitydeformationschemes . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.3 Deformationschemesforaportfoliomodelin1-D . . . . . . . . . . . . . . . 66 5.3.1 Modeldescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.3.2 Numericalanalysisofprobabilitydeformationschemes . . . . . . . . . 67 5.4 Deformationschemesforaportfoliomodelin2-D . . . . . . . . . . . . . . . 70 5.4.1 Modeldescription . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5.4.2 Numericalanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 5.5 Someremarksonmomentdivisiondeformation . . . . . . . . . . . . . . . . . 73 5.6 Applicabilitytoawideclassofstochasticprocessesforriskygrowth . . . . . . 76 5.7 Towardsadistribution-freeapproach . . . . . . . . . . . . . . . . . . . . . . . 76 5.8 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 6 Momentbaseddiscreteprobabilityapproximationoftransactioncostmodels 78 6.1 Treeapproximationsforfixedtransactioncostmodel . . . . . . . . . . . . . . 78 6.1.1 Themodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.1.2 Approximationalgorithm . . . . . . . . . . . . . . . . . . . . . . . . . 86 vi 6.1.3 Modeloutputandvalidation . . . . . . . . . . . . . . . . . . . . . . . 88 N = 1riskyassets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Resultsfor N ≥ 2riskyassets . . . . . . . . . . . . . . . . . . . . . . 90 6.1.4 Model risk: optimal policies when risky portfolio growth follows an arbitrarydistribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 6.1.5 Analyzingfinitehorizonboundaries . . . . . . . . . . . . . . . . . . . 94 6.1.6 Computationalcomplexityanderroranalysis . . . . . . . . . . . . . . 95 6.2 Approximate dynamic mean-variance portfolio optimization under transaction costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 6.2.2 Themodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 6.2.3 Numericalmethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 6.2.4 No-transactionregionswithtimeandefficiencyfrontiers . . . . . . . . 110 6.2.5 Sharperatiotimeseries . . . . . . . . . . . . . . . . . . . . . . . . . . 110 6.2.6 Comparisonofsolutionwithmodelusingtheexactdistribution . . . . . 111 6.2.7 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.3 Treeapproximationofproportionaltransactioncostmodel . . . . . . . . . . . 113 6.4 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 7 Valueofre-balancingportfoliosundertransactioncosts 117 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.2 Investmentmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 7.3 Numericalanalysisofthevalueofre-balancing . . . . . . . . . . . . . . . . . 120 7.3.1 Log-utilitycase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.3.2 CRRAcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 7.3.3 CARAcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.3.4 Mean-variancecase . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.4 IntuitiveexplanationofresultsusingthestatevariableSDE . . . . . . . . . . . 126 7.5 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 8 Latticeapproximationforadynamicstochastictransactioncostmodel 140 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 8.2 Transactioncostmodelwithstochasticvolatility . . . . . . . . . . . . . . . . . 140 8.3 Investmentmodelundertransactioncosts . . . . . . . . . . . . . . . . . . . . 141 8.4 Formulationasastochastictransactioncostmodel . . . . . . . . . . . . . . . 142 8.5 Latticeformulationofthemodel . . . . . . . . . . . . . . . . . . . . . . . . . 143 8.6 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 9 Portfoliooptimizationundertransactioncostsincorporatingrealisticconstraints 151 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 9.2 Themodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 9.3 Solutionmethodologyforconstraints . . . . . . . . . . . . . . . . . . . . . . . 152 9.4 Numericalresultsforrealisticproblems . . . . . . . . . . . . . . . . . . . . . 154 9.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 vii 10 Latticemethodsforpairstrading 161 10.1 Dynamicpairstradingbasedupondiscretetimesignals . . . . . . . . . . . . . 161 10.1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 10.1.2 Latticebasedsolutionmethodology . . . . . . . . . . . . . . . . . . . 164 10.2 Latticemethodfordynamicpairstradingundertransactioncosts . . . . . . . . 168 10.2.1 Intuitionbehinddynamicpairstrading . . . . . . . . . . . . . . . . . . 168 10.2.2 Dynamicprogrammingformulationofthetradingmodel . . . . . . . . 170 10.2.3 Evolutionofportfoliostateprocessesunderapairstradingmodel . . . 172 Position1-A− > 0,A− < 0withA− (cid:31) |A− |: . . . . . . . . . . . . 172 1,k 2,k 1,k 2,k 10.2.4 Ageneralizedtradingmodel . . . . . . . . . . . . . . . . . . . . . . . 174 Evolutionofstateparticleswithoutanypre-determinedtradingrule . . 174 10.2.5 Solutionmethodology . . . . . . . . . . . . . . . . . . . . . . . . . . 175 10.2.6 Numericalresultsforcontrollaw . . . . . . . . . . . . . . . . . . . . 175 10.2.7 Mean-varianceoptimalityofdynamicpairstrading: . . . . . . . . . . . 176 10.2.8 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 11 CONCLUSION 179 11.1 Developingmethodsforimprovedcomputationalspeed . . . . . . . . . . . . . 182 11.2 Extendingourmodelingframeworktoawiderrangeofassetclasses . . . . . . 183 11.3 Analyzetheoreticaleconomicproblems . . . . . . . . . . . . . . . . . . . . . 185 11.4 Incorporatingparameteruncertaintyintoourdecisionmakingmethodology . . 185 11.5 Incorporatingmacro-economicfactorsintoourdecisionmakingmethodology . 187 11.6 Arigorousanalysisofdifferentdynamictradingstrategies . . . . . . . . . . . 187 Bibliography 188 A Mathematicacodeforchapter4 194 A.1 Treeconstructioncode: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 A.1.1 Treeconstructionin2-D . . . . . . . . . . . . . . . . . . . . . . . . . 194 A.1.2 Treeconstructionin3-D . . . . . . . . . . . . . . . . . . . . . . . . . 195 A.2 Treesviamoregeneralprobabilitydeformationcode: . . . . . . . . . . . . . . 196 A.2.1 SQIDschemein1-D . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 A.2.2 SQIDschemein2-D . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 A.3 Recursionviadynamicprogrammingcode . . . . . . . . . . . . . . . . . . . . 197 A.3.1 Initialrecursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 A.3.2 Subsequentrecursion . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 A.3.3 Analysisofoptimalcontrolsobtained-sayconstructingtheboundaries ofno-transactionregionsusingConvexHull[] . . . . . . . . . . . . . . 198 A.3.4 Code that uses creation of small ‘Balls’ to create the no-transaction regioninchapter6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 A.4 Analysisoftheoptimalcontrollaw . . . . . . . . . . . . . . . . . . . . . . . . 198 A.4.1 Codesnippetshowingcontrolstorage . . . . . . . . . . . . . . . . . . 198 A.4.2 Codesnippetshowinguseofstoredcontrolsforfurtheranalysistogen- erateefficientfrontierforbenchmarkprobleminsection3.4. . . . . . . 199 viii B PairTradingModels 200 B.1 AlternatePairtradingmodelsinsection1ofchapter11 . . . . . . . . . . . . . 200 B.1.1 Modelusing Log(Z ) = A −φ −φ B signal . . . . . . . . . . . . . . 200 k k 1 2 k B.2 DynamicPairTradingModelinsection2ofchapter11 . . . . . . . . . . . . . 201 B.2.1 Position2: A− > 0,A− < 0withA− ≺ |A− |: . . . . . . . . . . . . 201 1,k 2,k 1,k 2,k B.2.2 Position3: A− < 0,A− > 0with|A− | ≺ A− : . . . . . . . . . . . . 203 1,k 2,k 1,k 2,k B.2.3 Position4: A− < 0,A− > 0with|A− | (cid:31) A− : . . . . . . . . . . . . 205 1,k 2,k 1,k 2,k B.3 Generaltradingmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208 CurriculumVitae 211 ix

Description:
portfolio insurance and draw-down. Finally, we also highlight a lattice based framework for pairs trading. Keywords: Portfolio Allocation, Transaction costs iv 3.11 Analysis of continuous time dynamic trading strategies . 6.2 Approximate dynamic mean-variance portfolio optimization under transact
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.