ebook img

Approximate methods for change of representation and their applications in CAGD PDF

137 Pages·2011·2.5 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Approximate methods for change of representation and their applications in CAGD

Approximate methods for change of representation and their applications in CAGD Oliver J. D. Barrowclough 2012 Preface The work that comprises this thesis has been performed as part of the EU-project Shapes, Ge- ometry and Algebra (SAGA) under grant agreement n◦ PITN-GA-2008-214584. The SAGA networkconsistsof10partnersincludingindustrialcompanies,researchinstitutesanduniversi- ties,basedthroughoutEurope. Thebroadaimsoftheprojectaretoexploitmathematicalresults from fields such as Algebraic Geometry, Numerical Analysis and Computer Algebra, in the applied field of Computer Aided Design and Manufacturing (CAD/CAM). The majority of the workinthisthesisisrelatedtoWorkPackageIintheSAGAproject,whoseaimistoinvestigate methodsforchangeofrepresentation. Acknowledgements I would first like to express my thanks to the main source of funding for this project, which was through my early-stage researcher (ESR) fellowship in the SAGA project. I would also like to thank the Research Council of Norway for the extra funding they provided (IS-TOPP, Projectnumber201280). IwanttoexpressmygratitudetoSINTEFforprovidingastimulating workplace for me for the past three years. I would also like to thank the other institutions I have been involved with including Center of Mathematics for Applications (CMA) and the Department of Informatics at University of Oslo, and the Institute of Applied Geometry at JohannesKeplerUniversity,Linz. IwouldliketothankmymainsupervisorDr. TorDokkenwhosepreviousworkinspiredthe thesisandwhoprovidedcontinualsupportandinsightduringtheproject. Heshouldalsoreceive greatcreditfortheeffortheputintocoordinatetheSAGAproject. ThanksalsogotoProfessor Bert Jüttler who guided me well during my time in Linz, and with whom I collaborated on a paperalongwithDr. TinoSchulz. AtSINTEF,IamgratefultoallthoseintheDepartmentofAppliedMathematics. Particular thanks go to Johan Seland for his help in installing his software for algebraic surface visuali- sation, which has been useful in my research. Also to those in the Geometry group including JanThomassen andVibeke Skytt whosehelp has beenvaluable throughout. During my time at SINTEF I have also had the pleasure of working alongside several colleagues from the SAGA projectincludingJayasimhaBagalkote,ThienNguyen,PeterNørtoft,DangManhNguyen,Tat- janaKalinkaandHeidiDahl,whohaveallcontributed toabrighter workplace. There are many other people I would like to thank for making the whole experience more enjoyable. At CMA, everyone who attended the Geometry seminar, where I learnt a lot about many different topics. Thanks to everyone who was involved in the SAGA project; the SAGA meetingshavealwaysbeenfantasticexperiencesbothprofessionallyandsocially. Abigthanks iii alsotoeveryoneinLinzwhomademefeelsowelcomeforthethreemonthsIspentthere. Lastbutnotleast,Iwouldliketothankmyfamilyfortheirsupportandencouragement,and forputtingupwithmelivingabroadforsolong. AndmygreatestthanksgotoElisabethforher constantsupport andforbeingthereformethroughout. iv Abstract: In modern computer aided design (CAD) systems, there are two main representa- tions of curves and surfaces: parametric and implicit representations. The two representations complementeachotherinthesensethattheirpropertiescanbeusedtosolvedifferentgeometric problems. Parametric curves are well suited to point generation, whereas implicit representa- tions efficiently determine whether or not a point lies on a curve or surface. The availability of both representations is of great advantage in answering geometric queries, such as intersec- tion and trimming problems. Methods for change of representation are thus of great practical importance. In this thesis we present several methods for implicitization; the process of chang- ing from the parametric to the implicit representation. The emphasis is on methods which are numerically stable and computationally efficient on modern hardware. We present a variety of approaches to approximate implicitization using linear algebra. In particular, we explore the implicitization of both rational parametric representations and envelopes - a type of curve or surface which often has no simple parametric representation. We also introduce a new method fortheimplicitrepresentationofrationalcubicBéziercurves,whichcanbeimplementedusing explicitformulas. v Contents I Introduction 1 1 Background 3 1 Freeformcurveandsurfacerepresentation . . . . . . . . . . . . . . . . . . . . 4 2 Methodsforimplicitization ofrationalcurvesandsurfaces . . . . . . . . . . . 10 2 Summaryofpapers 21 PaperI:Approximate Implicitization ofTriangularBézierSurfaces . . . . . . . . . . 21 PaperII:Approximate implicitization usinglinearalgebra . . . . . . . . . . . . . . . 22 PaperIII:FastapproximateimplicitizationofenvelopecurvesusingChebyshevpoly- nomials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 PaperIV:Abasisfortheimplicit representationofrational cubicBéziercurves . . . 26 3 Applicationsofmethodsforchangeofrepresentation 29 1 Intersectionalgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 Renderingofcurvesandsurfaces . . . . . . . . . . . . . . . . . . . . . . . . . 33 3 Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Bibliography 39 II Scientific papers 45 PaperI:ApproximateImplicitization ofTriangularBézierSurfaces 47 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 2 TriangularBézierSurfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3 ApproximateImplicitization . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4 ExamplesofImplicitization ofBézierTriangles . . . . . . . . . . . . . . . . . 57 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 PaperII:Approximateimplicitization usinglinearalgebra 65 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 3 Approximateimplicitization -theoriginalapproach . . . . . . . . . . . . . . . 67 4 Weakapproximate implicitization . . . . . . . . . . . . . . . . . . . . . . . . 69 5 Approximateimplicitization usingorthonormal bases . . . . . . . . . . . . . . 70 vii 6 Examplesoftheoriginalapproachwithdifferentbases . . . . . . . . . . . . . 72 7 Comparisonofthealgorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 78 8 Approximateimplicitization ofsurfaces . . . . . . . . . . . . . . . . . . . . . 83 9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Paper III: Fast approximate implicitization of envelope curves using Chebyshev poly- nomials 91 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 2 EnvelopesofRationalFamiliesofCurves . . . . . . . . . . . . . . . . . . . . 92 3 FastApproximate Implicitization ofEnvelopeCurves . . . . . . . . . . . . . . 93 4 Numericalresults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 PaperIV:AbasisfortheimplicitrepresentationofrationalcubicBéziercurves 101 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 2 AbasisforrepresentingrationalcubicBéziercurvesimplicitly . . . . . . . . . 103 3 Doublepointsoncubiccurves . . . . . . . . . . . . . . . . . . . . . . . . . . 107 4 Degenerationtoconicsections . . . . . . . . . . . . . . . . . . . . . . . . . . 114 5 Collinearpoints,zeroweightsandnumericalstability . . . . . . . . . . . . . . 116 6 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 7 Discussionandconclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Appendix4.A Somegeometricproperties . . . . . . . . . . . . . . . . . . . . . . 124 Appendix4.B LinearindependenceandproofsofTheorems . . . . . . . . . . . . . 125 viii Part I Introduction 1

Description:
Preface. The work that comprises this thesis has been performed as part of the EU-project Shapes, Ge- ometry and Algebra (SAGA) under grant agreement n◦
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.