1 Approximate Capacity of a Class of Partially Connected Interference Channels Muryong Kim, Yitao Chen, and Sriram Vishwanath, Senior Member, IEEE Abstract—We derive inner and outer bounds on the capacity based on rate-splitting, lattice alignment, and successive de- region for a class of three-user partially connected interference coding. channels. We focus on the impact of topology, interference alignment, and interplay between interference and noise. The 7 representative channels we consider are the ones that have clear B. Related Work interference alignment gain. For these channels, Z-channel type 1 Lattice coding based on nested lattices is shown to achieve outerboundsaretighttowithinaconstantgapfromcapacity.We 0 present near-optimal achievable schemes based on rate-splitting the capacity of the single user Gaussian channel in [12], [27]. 2 and lattice alignment. The idea of lattice-based interference alignment by decoding b the sum of lattice codewords appeared in the conference e Index Terms—Interference channel, interference alignment, F nested lattice code, side information graph, topological interfer- version of [4]. This lattice alignment technique is used to ence management. derive capacity bounds for three-user interference channel in 3 [2], [3]. The idea of decoding the sum of lattice codewords is 1 also used in [13]–[15] to derive the approximate capacity of I. INTRODUCTION ] the two-way relay channel. An extended approach, compute- T A. Motivation and-forward [16], [17] enables to first decode some linear I . ThecapacityoftheInterferencechannelremainsoneofthe combinations of lattice codewords and then solve the lattice s most challenging open problems in the domain of network equation to recover the desired messages. This approach is c [ information theory. The capacity region is not known in alsousedin[7]tocharacterizeapproximatesum-ratecapacity general, except for a specific range of channel parameters. of the fully connected K-user interference channel. 2 For the two-user scalar Gaussian interference channel, where The idea of sending multiple copies of the same sub- v 6 the interference alignment is not required, the approximate message at different signal levels, so-called Zigzag decoding, 7 capacity region to within one bit is known [1]. For the appeared in [5] where receivers collect side information and 5 channels where interference alignment is required such as the use them for interference cancellation. 7 K-user Gaussian interference channel [2]–[5], [7], [11] and The K-user cyclic Gaussian interference channel is con- 0 the Gaussian X-channel [9]–[11], a tight characterization of sidered in [6] where an approximate capacity for the weak . 1 the capacity region is not known, even for symmetric channel interference regime (SNR INR for all k) and the exact 0 k ≥ k cases. capacityforthestronginterferenceregime(SNR INR for 7 k k ≤ 1 Atractableapproachtothecapacityofinterferencechannels allk)arederived.Ourtype4and5channelsareK =3cases : is to consider partial connectivity of interference links and in mixed interference regimes, which were not considered in v analyze the impact of topology on the capacity. Topological [6]. i X interference management [8] approach gives important in- r sightson thedegrees-of-freedom (DoF)of partiallyconnected a C. Main Results interference channels and their connection to index coding problems [18]–[25]. It is shown that the symmetric DoF of We consider five channel types defined in Table I and a partially connected interference channel can be found by described in Fig. 1 (a)–(e). Each channel type is a partially solving the corresponding index coding problem. connected three-user Gaussian interference channel. Each conInnetchtiesdpinatpeerrf,erwenececocnhsaindneerlsaacnldascshaorfacttherreiez-euaseprprpoaxritmiaalltye tLraentsumsidtteenroties tshuebjneocitsetovaproiawnecrecboynsNtrkai=ntEE[[ZXk2k2].]W≤itPhoku=tloPss. capacity regions at finite SNR. We focus on the impact of of generality, we assume that N1 N2 N3. ≤ ≤ interferencetopology,interferencealignment,andinterplaybe- Definition1(sideinformationgraph):Thesideinformation tween interference and noise. We choose a few representative graph representation of an interference channel satisfies the topologies where we can achieve clear interference alignment following. gain. For these topologies, Z-channel type outer bounds are A node represents a transmitter-receiver pair, or equiva- • tight to within a constant gap from the corresponding inner lently, the message. bound. For each topology, we present an achievable scheme There is a directed edge from node i to node j if • transmitter i does not interfere at receiver j. The authors are with the University of Texas at Austin, Austin, The side information graphs for five channel types are de- TX 78701 USA (e-mail: [email protected], [email protected], sri- [email protected]). scribed in Fig. 1 (f)–(j). We state the main results in the 2 Type Channelmodel II. CAPACITYOUTERBOUNDS Y1=X1+X2+Z1 1 Y2=X1+X2+X3+Z2 We prove the capacity outer bound in Theorem 1 for each Y3=X2+X3+Z3 Y1=X1+X2+X3+Z1 channel type. The result is summarized in Table II. The shape 2 Y2=X1+X2+Z2 oftheouterboundregionisillustratedinFig.2.Forallchannel Y3=X1+X3+Z3 types, we assume P =P =P =P and N N N . Y1=X1+X3+Z1 1 2 3 1 ≤ 2 ≤ 3 3 Y2=X2+X3+Z2 Y3=X1+X2+X3+Z3 Y1=X1+X3+Z1 A. Channel Type 1 4 Y2=X1+X2+Z2 Y3=X2+X3+Z3 In this section, we present an outer bound on the capacity Y1=X1+X2+Z1 region of Type 1 channel defined by 5 Y2=X2+X3+Z2 Y3=X1+X3+Z3 TABLEI Y 1 1 0 X Z 1 1 1 FIVECHANNELTYPES Y2 = 1 1 1 X2 + Z2 . Y 0 1 1 X Z 3 3 3 We state the outer bound in the following theorem. following two theorems, of which the proofs will be given Theorem 3: The capacity region of Type 1 channel is in the main body of the paper. contained in the following outer bound region: Theorem 1 (Capacity region outer bound): For the five channel types, if (R1,R2,R3) is achievable, it must satisfy Rk ≤Ck, k(cid:18)=1,2,3(cid:19) (cid:18) (cid:19) 1 P 1 2P +N (cid:88) 1 (cid:18) P (cid:19) R1+R2 log 1+ + log 2 Rj log 1+ |K| (1) ≤ 2 N1 2 P +N2 j∈K ≤ 2 minj∈K{Nj} R2+R3 1log(cid:18)1+ P (cid:19)+ 1log(cid:18)2P +N3(cid:19). ≤ 2 N 2 P +N foreverysubset ofthenodes 1,2,3 thatdoesnotinclude 2 3 K { } a directed cycle in the side information graph over the subset. Proof: The individual rate bounds are obvious. We pro- Theorem 2 (Capacity region to within one bit): ceed to sum-rate bounds. For any rate triple (R ,R ,R ) on the boundary of the outer 1 2 3 boundregion,thepoint(R 1,R 1,R 1)isachievable. n(R +R (cid:15)) 1− 2− 3− 1 2− I(Xn;Yn)+I(Xn;Yn) ≤ 1 1 2 2 I(Xn;Yn Xn)+I(Xn;Yn Xn) D. Paper Organization and Notation ≤ 1 1 | 2 2 2 | 3 =h(Yn Xn) h(Yn Xn,Xn) The capacity outer bounds are derived in Section II. The 1 | 2 − 1 | 1 2 +h(Yn Xn) h(Yn Xn,Xn) innerboundsforeachchanneltypeandthecorrespondinggap 2 | 3 − 2 | 2 3 analysis are given in Section III, IV, V, VI, VII, respectively. =h(Xn+Zn) h(Zn) 1 1 − 1 Section VIII concludes the paper. While lattice coding-based +h(Xn+Xn+Zn) h(Xn+Zn) achievablerateregionsforchanneltypes4and5arepresented (cid:18)1 2 (cid:19) 2 − (cid:18) 1 2 (cid:19) n P +N n 2P +N 1 2 in Section VI and VII, random coding achievability is given log + log ≤ 2 N 2 P +N in Appendix. 1 2 Signal x is a coded version of message M with code where the first inequality is by Fano’s inequality, the second ij ij rate R unless otherwise stated. The single user capacity at inequality due to the independence of X ,X ,X . The third ij (cid:16) (cid:17) 1 2 3 receiver k is denoted by C = 1log 1+ P . Let denote inequalityholdsfromthefactthatGaussiandistributionmaxi- k 2 Nk C mizesdifferentialentropyandthath(Xn+Zn) h(Xn+Zn) the capacity region of an interference channel. Also, let i 1 1 − 1 2 R is also maximized by Gaussian distribution. Similarly, and denotethecapacityinnerboundandthecapacityouter o R bound, respectively. Thus, . Let δ denote the i o k R ⊂ C ⊂ R n(R +R (cid:15)) gapontherateRk between i and o.Letδjk denotethegap 2 3− on the sum-rate Rj +Rk bRetweenRRi and Ro. For example, ≤I(X2n;Y2n)+I(X3n;Y3n) if I(Xn;Yn Xn,Xn)+I(Xn;Yn) ≤ 2 2 | 1 3 3 3 =h(Yn Xn,Xn) h(Yn Xn,Xn,Xn) i = (Rj,Rk):Rk Lk,Rj +Rk Ljk (2) 2 | 1 3 − 2 | 1 2 3 R { ≤ ≤ } +h(Yn) h(Yn Xn) o = (Rj,Rk):Rk Uk,Rj +Rk Ujk , (3) 3 − 3 | 3 R { ≤ ≤ } =h(Xn+Zn) h(Zn) 2 2 − 2 thenδk =Uk Lk andδjk =Ujk Ljk.Forsideinformation +h(Xn+Xn+Zn) h(Xn+Zn) graph, we us−e graph notation of−[23]. For example, = (cid:18)2 3 (cid:19) 3 − (cid:18) 2 3 (cid:19) 1 n P +N n 2P +N G 2 3 (13),(2),(31) means that node 1 has an incoming edge log + log . f{rom| node3,t|hat}node2hasnoincomingedge,andthatnode ≤ 2 N2 2 P +N3 3 has an incoming edge from node 1. 3 1 1 1 1 11 11 11 11 1 1 2 2 2 2 22 22 22 22 2 2 3 3 3 3 33 33 33 33 3 3 (a) Type1 (b) Type2 (c) Type3 (d) Type4 (e) Type5 1 1 1 1 11 11 1 1 2 1 2 2 1 2 22 1 22 2 1 2 1 3 3 3 3 33 33 3 3 1 1 1 1 2 3 2 3 2 3 2 3 2 3 2 2 2 2 (f) G1 3 (g) G2 3 3 (h) G3 3 (i) G4 (j) G5 Fig. 1. Five channel types and their side information graphs: G1 = {(1|3),(2),(3|1)}, G2 = {(1),(2|3),(3|2)}, G3 = {(1|2),(2|1),(3)}, G4 = {(1|2),(2|3),(3|1)},andG5={(1|3),(2|1),(3|2)}. B. Channel Type 2 n(R +R (cid:15)) 1 3 − I(Xn;Yn)+I(Xn;Yn) ≤ 1 1 3 3 In this section, we present an outer bound on the capacity I(Xn;Yn Xn,Xn)+I(Xn;Yn) ≤ 1 1 | 2 3 3 3 region of Type 2 channel defined by =h(Yn Xn,Xn) h(Yn Xn,Xn,Xn) 1 | 2 3 − 1 | 1 2 3 +h(Yn) h(Yn Xn) 3 − 3 | 3 =h(Xn+Zn) h(Zn) Y1 1 1 1 X1 Z1 1 1 − 1 Y2 = 1 1 0 X2 + Z2 . +h(X(cid:18)1n+X3n(cid:19)+Z3n)−h(cid:18)(X1n+Z3n)(cid:19) Y 1 0 1 X Z n P +N n 2P +N 3 3 3 1 3 log + log . ≤ 2 N 2 P +N 1 3 We state the outer bound in the following theorem. Theorem 4: The capacity region of Type 2 channel is contained in the following outer bound region: Rk Ck, k =1,2,3 C. Channel Type 3 ≤ (cid:18) (cid:19) (cid:18) (cid:19) 1 P 1 2P +N 2 R +R log 1+ + log 1 2 ≤ 2 N1 2 P +N2 In this section, we present an outer bound on the capacity (cid:18) (cid:19) (cid:18) (cid:19) 1 P 1 2P +N3 region of Type 3 channel defined by R +R log 1+ + log . 1 3 ≤ 2 N 2 P +N 1 3 Y 1 0 1 X Z 1 1 1 Proof: Y2 = 0 1 1 X2 + Z2 . Y 1 1 1 X Z 3 3 3 n(R +R (cid:15)) We state the outer bound in the following theorem. 1 2 − I(Xn;Yn)+I(Xn;Yn) Theorem 5: The capacity region of Type 3 channel is ≤ 1 1 2 2 I(Xn;Yn Xn,Xn)+I(Xn;Yn) contained in the following outer bound region: ≤ 1 1 | 2 3 2 2 =h(Yn Xn,Xn) h(Yn Xn,Xn,Xn) 1 | 2 3 − 1 | 1 2 3 +h(Yn) h(Yn Xn) 2 − 2 | 2 Rk Ck, k =1,2,3 =h(Xn+Zn) h(Zn) ≤ 1 (cid:18) P (cid:19) 1 (cid:18)2P +N (cid:19) 1 1 − 1 R +R log 1+ + log 3 +h(Xn+Xn+Zn) h(Xn+Zn) 1 3 ≤ 2 N 2 P +N (cid:18)1 2 (cid:19) 2 − (cid:18) 1 2 (cid:19) (cid:18) 1(cid:19) (cid:18) 3 (cid:19) n P +N n 2P +N 1 P 1 2P +N 1 2 3 log + log . R +R log 1+ + log . 2 3 ≤ 2 N 2 P +N ≤ 2 N 2 P +N 1 2 2 3 4 where Y = 1 Y , Z = 1 Z , N = E[Z 2] = 1, R3 R3 E[X2] k(cid:48)P =√PNkandk k(cid:48) √Nk k 0 k(cid:48) k ≤ k h h h 1 0 1 11 12 13 √N1 √N1 R1 R1 h21 h22 h23 = √1N2 √1N2 0 . R2 R2 h31 h32 h33 0 √1N3 √1N3 (a) Channeltype1 (b) Channeltypes4and5 With the usual definitions of SNRk = h2kNk0Pk and Fig.2. Theshapeoftheouterboundregion.Theregionsforchanneltypes INR = h2jkPk for j =k as in [1], [6], 2and3looksimilartotheoneforchanneltype1(withchangeofaxis). k N0 (cid:54) P P SNR = INR = (4) 1 1 N ≥ N Proof: 1 2 P P SNR = INR = (5) 2 2 N ≥ N n(R +R (cid:15)) 2 3 1 3 − P P ≤II((XX1nn;;YY1nn)X+nI)(+XI3n(;XY3nn;)Yn Xn) SNR3 = N3 ≤INR3 = N1. (6) ≤ 1 1 | 3 3 3 | 2 =h(Yn Xn) h(Yn Xn,Xn) We state the outer bound in the following theorem. 1 | 3 − 1 | 1 3 +h(Yn Xn) h(Yn Xn,Xn) Theorem 6: The capacity region of Type 4 channel is 3 | 2 − 3 | 2 3 contained in the following outer bound region: =h(Xn+Zn) h(Zn) 1 1 − 1 +h(Xn+Xn+Zn) h(Xn+Zn) (cid:18)1 3 (cid:19) 3 − (cid:18) 1 3 (cid:19) Rk Ck, k =1,2,3 nlog P +N1 + nlog 2P +N3 . ≤ 1 (cid:18) P (cid:19) 1 (cid:18)2P +N (cid:19) 2 ≤ 2 N1 2 P +N3 R1+R2 ≤ 2log 1+ N + 2log P +N 1 2 (cid:18) (cid:19) 1 2P R +R log 1+ n(≤R2I(+XR2n;3Y−2n(cid:15)))+I(X3n;Y3n) R12+R33 ≤ 21log(cid:18)1+ NP1(cid:19)+ 1log(cid:18)2P +N3(cid:19). I(Xn;Yn Xn)+I(Xn;Yn Xn) ≤ 2 N2 2 P +N3 ≤ 2 2 | 3 3 3 | 1 =h(Yn Xn) h(Yn Xn,Xn) 2 | 3 − 2 | 2 3 Proof: +h(Yn Xn) h(Yn Xn,Xn) 3 | 1 − 3 | 1 3 =h(Xn+Zn) h(Zn) 2 2 − 2 n(R1+R2 (cid:15)) n+h(X(cid:18)2Pn++XN3n(cid:19)+Z3nn)−h(cid:18)(X2P2n++ZN3n)(cid:19) ≤I(X1n;Y−1n)+I(X2n;Y2n) log 2 + log 3 . I(Xn;Yn Xn)+I(Xn;Yn) ≤ 2 N 2 P +N ≤ 1 1 | 3 2 2 2 3 =h(Yn Xn) h(Yn Xn,Xn) 1 | 3 − 1 | 1 3 +h(Yn) h(Yn Xn) 2 − 2 | 2 =h(Xn+Zn) h(Zn) 1 1 − 1 D. Channel Type 4 +h(X(cid:18)1n+X2n(cid:19)+Z2n)−h(cid:18)(X1n+Z2n)(cid:19) n P +N n 2P +N 1 2 In this section, we present an outer bound on the capacity log + log . ≤ 2 N 2 P +N region of Type 4 channel defined by 1 2 Y 1 0 1 X Z 1 1 1 Y2 = 1 1 0 X2 + Z2 . n(R2+R3−(cid:15)) Y3 0 1 1 X3 Z3 I(Xn;Yn)+I(Xn;Yn) ≤ 2 2 3 3 I(Xn;Yn Xn)+I(Xn;Yn) This is a cyclic Gaussian interference channel [6]. We first ≤ 2 2 | 1 3 3 show that channel type 4 is in the mixed interference regime. =h(Yn Xn) h(Yn Xn,Xn) 2 | 1 − 2 | 1 2 By normalizing the noise variances, we get the equivalent +h(Yn) h(Yn Xn) channel given by =h(Xn+3Zn−) h3(Z|n)3 2 2 − 2 Y1(cid:48) h11 h12 h13 X1 Z1(cid:48) +h(X(cid:18)2n+X3n(cid:19)+Z3n)−h(cid:18)(X2n+Z3n)(cid:19) Y2(cid:48) = h21 h22 h23 X2 + Z2(cid:48) nlog P +N2 + nlog 2P +N3 . Y3(cid:48) h31 h32 h33 X3 Z3(cid:48) ≤ 2 N2 2 P +N3 5 n(R +R (cid:15)) Proof: 1 3 − I(Xn;Yn)+I(Xn;Yn) ≤≤≤==≤hhIII(((((XXXXY11111n1nnnn),;;(cid:18)+YYX−111nn3Xnh));3(nY++Y1+1nnII)|((ZXXX1n(cid:19)1n333nn),;;−XYY133h3nnn()||ZXX1n12nn))) n(≤≤≤≤=R1IIIIh(((((+XXXXYR1111nnnnn);;;,2YYYX−111nnn2nh(cid:15))));()Y+++Y1nnIII)(((XXXXn222nnn,;;;XYYY221nnnn))||XX31nn)) n 2P +N1 1 − 1 | 1 2 ≤ 2 log N1 =h(X1n(cid:18)+X2n+Z1n(cid:19))−h(Z1n) n 2P +N 1 log where we used the fact that I(Xn;Yn Xn) = I(Xn;Xn + ≤ 2 N1 3 3 | 2 3 3 Zn) I(Xn;Xn+Zn)=I(Xn;Yn Xn). 3 ≤ 3 3 1 3 1 | 1 where we used the fact that I(Xn;Yn Xn) = I(Xn;Xn + 2 2 | 3 2 2 Zn) I(Xn;Xn+Zn)=I(Xn;Yn Xn). 2 ≤ 2 2 1 2 1 | 1 E. Channel Type 5 n(R2+R3 (cid:15)) − I(Xn;Yn)+I(Xn;Yn) In this section, we present an outer bound on the capacity ≤I(X2n;Y2n)+I(X3n;Y3n Xn) region of Type 5 channel defined by ≤ 2 2 3 3 | 1 I(Xn;Yn)+I(Xn;Yn Xn) ≤ 2 2 3 2 | 2 I(Xn,Xn;Yn) Y1 1 1 0 X1 Z1 ≤ 2 3 2 Y2 = 0 1 1 X2 + Z2 . =h(Y2n)−h(Y2n|X2n,X3n) Y3 1 0 1 X3 Z3 =h(X2n(cid:18)+X3n+Z2n(cid:19))−h(Z2n) n 2P +N 2 log This is a cyclic Gaussian interference channel [6]. We first ≤ 2 N 2 show that channel type 5 is in the mixed interference regime. By normalizing the noise variances, we get the equivalent where we used the fact that I(Xn;Yn Xn) = I(Xn;Xn + 3 3 | 1 3 3 channel given by Zn) I(Xn;Xn+Zn)=I(Xn;Yn Xn). 3 ≤ 3 3 2 3 2 | 2 YYY123(cid:48)(cid:48)(cid:48) = √√011NN13 √√011NN12 √√011NN23 XXX123 + ZZZ123(cid:48)(cid:48)(cid:48) . n(≤≤=R1IIh(((+XXYR11nnn;;3XYY−11nnn)(cid:15))|X)+2nhI)((+YXnI3n(;XXY3n3nn,;)XY3nn)) 1 | 2 − 1 | 1 2 We can see that +h(Yn) h(Yn Xn) 3 − 3 | 3 =h(Xn+Zn) h(Zn) SNR = P INR = P (7) +h1(Xn+1 X−n+Z1n) h(Xn+Zn) 1 N1 ≥ 1 N3 n (cid:18)1P +N3 (cid:19) 3n − (cid:18)2P1 +N3 (cid:19) P P log 1 + log 3 SNR = INR = (8) ≤ 2 N 2 P +N 2 N ≤ 2 N 1 3 2 1 P P SNR = INR = . (9) 3 3 N ≤ N 3 2 We state the outer bound in the following theorem. F. Relaxed Outer Bounds Theorem 7: The capacity region of Type 5 channel is contained in the following outer bound region: For ease of gap calculation, we also derive relaxed outer bounds. First, we can see that for N N , j k ≤ R C , k =1,2,3 (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) k k 1 P 1 2P +N 1 2P ≤ 1 (cid:18) 2P(cid:19) log 1+ + log k log 1+ . R1+R2 log 1+ 2 Nj 2 P +Nk ≤ 2 Nj ≤ 2 N 1 (cid:18) (cid:19) 1 2P Five outer bound theorems in this section, together with this R +R log 1+ 2 3 ≤ 2 N inequality, give the sum-rate bound expression in Theorem 1. 2 R +R 1log(cid:18)1+ P (cid:19)+ 1log(cid:18)2P +N3(cid:19). Next, we can assume that P ≥ 3Nj for j = 1,2,3. 1 3 Otherwise, showing one-bit gap capacity is trivial as the ≤ 2 N 2 P +N 1 3 6 Type OuterboundregionRo RelaxedouterboundregionR(cid:48)o Two-dimensionalcross-sectionofR(cid:48)o (cid:16) (cid:17) 1 RR21++RRRk32≤≤≤C2211kll,ooggk(cid:16)(cid:16)=PPNN++1,NN12212,3·· 22PPPP++++NNNN2323(cid:17)(cid:17) RR12++RRRk23≤≤≤121212llloooggg(cid:16)(cid:16)(cid:16)NNNPPPk12 ···437733(cid:17)(cid:17)(cid:17) RRAt13s≤≤ommmeiiRnn2(cid:110)(cid:110)∈1122ll[oo0gg,C(cid:16)(cid:16)2NNPP],12 ·· 3377(cid:17)(cid:17)−−RR22,,1212lloogg(cid:16)(cid:16)NNPP13 ·· 4343(cid:17)(cid:17)(cid:111)(cid:111) 2 RR11++RRRk32≤≤≤C2211kll,ooggk(cid:16)(cid:16)=PPNN++1,NN11211,3·· 22PPPP++++NNNN2323(cid:17)(cid:17) RR11++RRRk23≤≤≤121212llloooggg(cid:16)(cid:16)(cid:16)NNNPPPk11 ···437733(cid:17)(cid:17)(cid:17) RRAt23s≤≤ommmeiiRnn1(cid:110)(cid:110)∈1122ll[oo0gg,C(cid:16)(cid:16)1NNPP],11 ·· 3377(cid:17)(cid:17)−−RR11,,1212lloogg(cid:16)(cid:16)NNPP23 ·· 4343(cid:17)(cid:17)(cid:111)(cid:111) 3 RR21++RRRk33≤≤≤C2211kll,ooggk(cid:16)(cid:16)=PPNN++1,NN12212,3·· 22PPPP++++NNNN3333(cid:17)(cid:17) RR12++RRRk33≤≤≤121212llloooggg(cid:16)(cid:16)(cid:16)NNNPPPk12 ···437733(cid:17)(cid:17)(cid:17) RRAt12s≤≤ommmeiiRnn3(cid:110)(cid:110)∈1122ll[oo0gg,C(cid:16)(cid:16)3NNPP],12 ·· 3377(cid:17)(cid:17)−−RR33,,1212lloogg(cid:16)(cid:16)NNPP12 ·· 4343(cid:17)(cid:17)(cid:111)(cid:111) 4 RRR121+++RRRRk332≤≤≤≤C222111klll,ooogggk(cid:16)(cid:16)(cid:16)=P2PPNN++1N+,NN1212N12,13··(cid:17)22PPPP++++NNNN2323(cid:17)(cid:17) RRR112+++RRRRk233≤≤≤≤12121212lllloooogggg(cid:16)(cid:16)(cid:16)(cid:16)NNNNPPPPk112 ····43777333(cid:17)(cid:17)(cid:17)(cid:17) RRRAt232s+≤≤omRmme3iiRnn≤1(cid:110)(cid:110)∈121122lll[ooo0ggg,C(cid:16)(cid:16)(cid:16)1NNNPPP],211 ···733377(cid:17)(cid:17)(cid:17)−−RR11,,1212lloogg(cid:16)(cid:16)NNPP23 ·· 4343(cid:17)(cid:17)(cid:111)(cid:111) 5 RRR211+++RRRRk332≤≤≤≤C222111klll,ooogggk(cid:16)(cid:16)(cid:16)=22PPPN+1NN++,N1122NN1,123·(cid:17)(cid:17)2PP++NN33(cid:17) RRR121+++RRRRk233≤≤≤≤12121212lllloooogggg(cid:16)(cid:16)(cid:16)NNNNPPPPk121 ····43777333(cid:17)(cid:17)(cid:17) RRRAt131s+≤≤omRmme3iiRnn≤2(cid:110)(cid:110)∈121122lll[ooo0ggg,C(cid:16)(cid:16)(cid:16)2NNNPPP],112 ···733377(cid:17)(cid:17)(cid:17)−−RR22,,1212lloogg(cid:16)(cid:16)NNPP13 ·· 4343(cid:17)(cid:17)(cid:111)(cid:111) TABLEII CAPACITYOUTERBOUNDS capacity region is included in the unit hypercube, i.e., R A. Preliminaries: Lattice Coding j (cid:16) (cid:17) ≤ 1log 1+ P <1. For P 3N , 2 Nj ≥ j LatticeΛisadiscretesubgroupofRn,Λ= t=Gu:u 1 (cid:18) 2P(cid:19) 1 (cid:18) P (cid:19) 1 (cid:18)Nj (cid:19) Zn whereG Rn n isarealgeneratormatri{x.Quantizatio∈n log 1+ = log + log +2 × } ∈ 2 Nj 2 Nj 2 P with respect to Λ is QΛ(x) = argminλ Λ x λ . Modulo 1 (cid:18) P (cid:19) 1 (cid:18)7(cid:19) operation with respect to Λ is M (x) =∈ [x(cid:107)] m−od(cid:107)Λ = x log + log Λ − ≤ 2 Nj 2 3 QΛ(x). For convenience, we use both notations MΛ(·) and (cid:18) (cid:19) (cid:18) (cid:19) (cid:18) (cid:19) [] mod Λ interchangeably. Fundamental Voronoi region of Λ 1 P 1 P 1 4 log 1+ log + log . i·s (Λ) = x : Q (x) = 0 . Volume of the Voronoi region 2 Nj ≤ 2 Nj 2 3 V { Λ(cid:82) } of Λ is V(Λ) = dx. Normalized second moment of (Λ) The resulting relaxed outer bounds R(cid:48)o are summarized in Λ is G(Λ) = σ2(ΛV) where σ2(Λ) = 1 (cid:82) x 2dx. Table II. V(Λ)2/n nV(Λ) (Λ)(cid:107) (cid:107) Lattices Λ , Λ and Λ are said to be nested if ΛV Λ Λ . 1 2 2 1 ⊆ ⊆ For nested lattices Λ Λ , Λ /Λ =Λ (Λ ). 2 1 1 2 1 2 III. INNERBOUND:CHANNELTYPE1 ⊂ ∩V Webrieflyreviewthelatticedecodingprocedurein[12].We RαThiseodreefimne8d: bGyiven α = (α0,α2) ∈ [0,1]2, the rate region Vus(eΛn)e=ste(d2lπaettSic)en2s.ΛT⊆heΛtrtawnsimthitσte2r(Λse)n=dsSx,=G([Λt)+=d]2π1meo,danΛd 1 (cid:18)1 α (1 α )P (cid:19) over the point-to-point Gaussian channel y=x+z where the R1 ≤ 2log+ 2−−α00 + (α0+−α(cid:18)2)P0 +N2(cid:19) tchoedetrwaonrsdmtit∈poΛwte∩r 1V(xΛ)2, t=heSdiatnhderthsiegnnaolisde z∼ Unif((0V,(NΛI))),. +1log 1+ α0P The code rate is givnen(cid:107)b(cid:107)y R= 1 log(cid:16)V(Λ)(cid:17). ∼N 2 N1 n V(Λt) 1 (cid:18) α P (cid:19) After linear scaling, dither removal, and mod-Λ operation, 2 R log 1+ 2 ≤ 2 α P +N we get 0 2 (cid:18) (cid:19) 1 1 P R log+ + 3 ≤ 2 2 α (α +α )P +N − 0 0 2 3 y(cid:48) =[βy d] mod Λ=[t+ze] mod Λ (10) − where log+()=max 0,log() . And, · { · } (cid:32) (cid:33) (cid:91) where the effective noise is ze = (β 1)x + βz1 and its R= CONV α Rα vMaMriaSnEcescσae2lin=g fn1acEt[o(cid:107)rzeβ(cid:107)2=] =S(β −plu1g)g2−eSd+inβ, 2wNe.gWetitσh2th=e S+N e is achievable where CONV() is convex hull operator. βN = SN .Thecapacityofthemod-Λchannel[12]between · S+N 7 t and y is where t Λ (Λ ) and t Λ (Λ ) are lattice 11 c 1 3 c 3 ∈ ∩V ∈ ∩V codewords. The dither signals d and d are uniformly 1 1 1 11 3 I(t;y) = h(y) h(yt) distributed over (Λ ) and (Λ ), respectively. To satisfy n n1 − n1 | power constraintsV, we1chooseVE[ 3x11 2] = nσ2(Λ1) = (1 = h(y) h(z mod Λ) α )nP, E[ x 2] = α nP, E[ (cid:107)x 2(cid:107)] = α nP, E[ x 2] −= n − n 1 (cid:107) 10(cid:107) 1 (cid:107) 2(cid:107) 2 (cid:107) 3(cid:107) 1 1 nσ2(Λ3)=nP. h(y) h(z) Withthechoiceoftransmitsignals,thereceivedsignalsare ≥ n − n 1 1 given by = logV(Λ) h(z) n − n (cid:18) (cid:19) y =x +x +x +z 1 S 1 11 2 10 1 = log 2 βN y2 =[x11+x3]+x2+z(cid:48)2 (cid:18) (cid:19) = 1log 1+ S y3 =x3+z(cid:48)3. 2 N where x = [x +x ] is the sum of interference, and z = = C f 11 3 (cid:48)2 x +z and z = x +z are the effective Gaussian noise. 10 2 (cid:48)3 2 3 where I() and h() are mutual information and differential The signal scale diagram at each receiver is shown in Fig. 3 · · entropy, respectively. For reliable decoding of t, we have (a). the code rate constraint R C. With the choice of lattice At the receivers, successive decoding is performed in the pσa2r(aΛmt)eter2s,πeσβ2N(Λ,t) ≥ βN,≤G(Λt) = 2π1e and V(Λt)n2 = froeclleoiwveirng2,oardnedr:rexc1e1iv→er 3x2on→lyxd1e0coadtersecxe3i.ver 1, xf → x2 at G(Λt) ≥ Note that the aligned lattice codewords t + t Λ , 1 (cid:18)V(Λ)(cid:19) and t = [t + t ] mod Λ Λ (Λ )1.1We 3sta∈te thce R = log f 11 3 1 ∈ c ∩ V 1 n V(Λt) relationship between xf and tf in the following lemmas. 1 (cid:18) (2πeS)n2 (cid:19) Lemma 1: The following holds. log ≤ n (2πeβN)n2 1 (cid:18) S (cid:19) [xf −df] mod Λ1 =tf = log . 2 βN where d =d +d . f 11 3 Thus, the constraint R C can be satisfied. By lattice Proof: ≤ decoding [12], we can recover t, i.e., [x d ] mod Λ f f 1 − QΛt(y(cid:48))=t, (11) =[MΛ1(t11+d11)+MΛ3(t3+d3)−df] mod Λ1 with probability 1−Pe where =[MΛ1(t11+d11)+MΛ1(t3+d3)−df] mod Λ1 =[t +d +t +d d ] mod Λ Pe =Pr[QΛt(y(cid:48))(cid:54)=t] (12) =[t11+t1]1mod3Λ 3− f 1 11 3 1 is the probability of decoding error. If we choose Λ to be =t f Poltyrev-good [27], then P 0 as n . e → →∞ Thesecondandthirdequalitiesareduetodistributivelawand B. Achievable Scheme the identity in the following lemma. Lemma 2: For any nested lattices Λ Λ and We present an achievable scheme for the proof of any x Rn, it holds that 3 ⊂ 1 Theorem 8. The achievable scheme is based on rate- ∈ splitting, lattice coding, and interference alignment. Message [M (x)] mod Λ =[x] mod Λ . M1 1,2,...,2nR1 is split into two parts: M11 Λ3 1 1 ∈ { } ∈ 1,2,...,2nR11 and M10 1,2,...,2nR10 , so R1 = Proof: { } ∈ { } R + R . Transmitter 1 sends x = x + x where 11 10 1 11 10 x and x are coded signals of M and M , respec- [M (x)] mod Λ 11 10 11 10 Λ3 1 tively. Transmitters 2 and 3 send x2 and x3, coded signals =[x λ3] mod Λ1 poafrtMicu2la∈r, x{111,2a,n.d..x,32naRre2}latatnicde-Mco3ded∈si{g1n,a2l,s....,2nR3}. In =[M−Λ1(x)−MΛ1(λ3)] mod Λ1 We use the lattice construction of [14], [15] with the lattice =[MΛ1(x)−λ3+QΛ1(λ3)] mod Λ1 partition chain Λ /Λ /Λ , so Λ Λ Λ are nested =[M (x)] mod Λ c 1 3 3 ⊂ 1 ⊂ c Λ1 1 lattices. Λc is the coding lattice for both x11 and x3. Λ1 and =[x] mod Λ1 Λ areshapinglatticesforx andx ,respectively.Thelattice 3 11 3 signals are formed by where λ =Q (x) Λ , thus Q (λ )=λ . 3 Λ3 ∈ 1 Λ1 3 3 Lemma 3: The following holds. x =[t +d ] mod Λ (13) 11 11 11 1 x =[t +d ] mod Λ (14) [t +d ] mod Λ =[x ] mod Λ . 3 3 3 3 f f 1 f 1 8 (α¯0+1)PNe2 . The capacity of the mod-Λ channel between (1−α0)P x x +x x P t(αf¯0a+n1d)Py+2(cid:48)Nies2 1 11 11 3 3 α P 1 2 I(t ;y ) x x x n f 2(cid:48) 2 2 2 α P !"#$$%&’()*%’+’ 1 (cid:18)V(Λ )(cid:19) 0 1 log x10 x10 ≥ n 2h(ze2) (cid:18) (cid:19) 1 α¯ P 0 RX1 RX2 RX3 = log 2 β N 2 e2 (a) Channeltype1 (cid:18) (cid:19) 1 α¯ (α¯ +1)P +α¯ N 0 0 0 e2 = log PP 2 (α¯0+1)Ne2 (cid:18) (cid:19) x2+xx3 xx2 xx3 = 1log α¯0 + α¯0P α1PP !"#$$%&’()*%’,’ 2 α¯0+1 Ne2 xx1 xx1 xx1 1 (cid:18) α¯0 α¯0P (cid:19) = log + 2 α¯ +1 (α +α )P +N RRXX11 RRXX22 RRXX33 0 0 2 2 =C f (b) Channeltype2 For reliable decoding of t at receiver 2, we have the PP xxx3 xxx3 xxx3 PPP icmodpeliersattehactonRstra=int1Rlo1g1(cid:16)=V(n1Λf2l)o(cid:17)g(cid:16)VVC((ΛΛ1c))+(cid:17) 1≤loCgf(cid:16).VT(hΛi2s)(cid:17)als=o αP xx xx xx (cid:16) (cid:17)3 n (cid:16) V(Λc) ≤ f n (cid:17) V(Λ1) x1 x2 x1+x2 12log β2PNe2 = 12log α¯01+1 + (α0+αP2)P+N2 . By lattice RX1 RX2 RX3 decoding, we can recover the modulo sum of interference RX1 RX2 RX3 RX1 RX2 RX3 codewords t from y . Then, we can recover the real sum f 2(cid:48) (c) Channeltype3 xf in the following way. Recover M (x ) by calculating [t + d ] mod Λ Fig.3. Signalscalediagram. • Λ1 f f f 1 (lemma 3). Subtract it from the received signal, • Proof: y2−MΛ1(xf)=QΛ1(xf)+z(cid:48)2(cid:48) (18) [tf +df] mod Λ1 where z(cid:48)2(cid:48) =x2+x10+z2. Quantize it to recover Q (x ), =[MΛ1(t11+t3)+df] mod Λ1 • Λ1 f =[t11+t3+df] mod Λ1 QΛ1(QΛ1(xf)+z(cid:48)2(cid:48))=QΛ1(xf) (19) =[MΛ1(t11+d11)+MΛ1(t3+d3)] mod Λ1 with probability 1−Pe where =[M (t +d )+M (t +d )] mod Λ =[x Λ1+x11] mo1d1Λ Λ3 3 3 1 Pe =Pr[QΛ1(QΛ1(xf)+z(cid:48)2(cid:48))(cid:54)=QΛ1(xf)] (20) 11 3 1 is the probability of decoding error. If we choose Λ to =[x ] mod Λ 1 f 1 be simultaneously Rogers-good and Poltyrev-good [27] with V(Λ ) V(Λ ), then P 0 as n . 1 c e ≥ → →∞ Receiver 2 does not need to recover the codewords t and Recover xf by adding two vectors, 11 • t but the real sum x to remove the interference from y . 3 f 2 M (x )+Q (x )=x . (21) Sincex =M (x )+Q (x ),wefirstrecoverthemodulo Λ1 f Λ1 f f f Λ1 f Λ1 f part and then the quantized part to cancel out xf. This idea Wenowproceedtodecodingx2fromy2−xf =x2+z(cid:48)2.Since appearedin[17]asanachievableschemeforthemany-to-one x2 isacodewordfromani.i.d.randomcodeforpoint-to-point interference channel. channel, we can achieve rate up to The mod-Λ1 channel between tf and y2(cid:48) is given by R 1log(cid:18) α2P (cid:19). (22) 2 ≤ 2 α P +N y =[β y d ] mod Λ (15) 0 2 2(cid:48) 2 2− f 1 At receiver 1, we first decode x while treating other =[x d +z ] mod Λ (16) 11 f f e2 1 − signals x + x + z as noise. The effective noise in the =[t +z ] mod Λ (17) 2 10 1 f e2 1 mod-Λ channel is z =(β 1)2x +β (x +x +z ) 1 e1 1 11 1 2 10 1 NwohteereththaeteEff[ecxtfive2n]o=ise(zα¯e02+=1()βn2P−,1)axndf+thβe2(exff2e+ctxiv1e0+nozi2s)e. wwhitehrevaNriea1nc=e σ(αe210=+αn12E)[P(cid:107)z+e1−(cid:107)N21].=Fo(rβ1re−lia1b)le2α¯d0ePco+dinβg12,Nthe1e variance σe22(cid:107)= n1(cid:107)E[(cid:107)ze2(cid:107)2] = (β2−1)2(α¯0+1)P +β22Ne2 rate R11 must satisfy where Ne2 = (α0 + α2)P + N2. With the MMSE scaling 1 (cid:18)σ2(Λ1)(cid:19) 1 (cid:18) α¯0P (cid:19) factor β2 = (α¯0(+α¯01+)P1+)PNe2 plugged in, we get σe22 =β2Ne2 = R11 ≤ 2log β1σe21 = 2log 1+ (α0+α2)P +N1 9 wheretheMMSEscalingparameterβ = α¯0P .Similarly, C. The Gap 1 α¯0P+Ne1 we have the other rate constraints at receiver 1: We choose the parameter α = N2, which is suboptimal (cid:18) (cid:19) 0 P 1 α P R log 1+ 2 (23) but good enough to achieve a constant gap. This choice of 2 ≤ 2 α0P +N1 parameter, inspired by [1], ensures making efficient use of (cid:18) (cid:19) 1 α P signalscaledifferencebetweenN andN atreceiver1,while R log 1+ 0 . (24) 1 2 10 ≤ 2 N1 keepingtheinterferenceofx10atthenoiselevelN2atreceiver 2. By substitution, we get At receiver 3, the signal x is decoded with the effective 3 noise x2+z3. For reliable decoding, R3 must satisfy 1 (cid:18) P N2 (cid:19) T = log c + − 1 (cid:18) P (cid:19) 1 2 11 α2P +2N2 R3 ≤ 2log 1+ α2P +N3 . (25) +1log(cid:18)1+ N2(cid:19) (33) 2 N In summary, 1 (cid:18) (cid:19) 1 α P • x11 decoded at receivers 1 and 2 T2 = 2log 1+ 2N2 (34) (cid:18) (cid:19) 2 1 (1 α )P (cid:18) (cid:19) R11 ≤T1(cid:48)1 = 2log 1+ (α0+−α2)P0 +N1 T3 ≥ 12log c3+ α P +PN +N . (35) (cid:18) (cid:19) 2 2 3 1 (1 α )P 0 wxherdeeRcco111d1e=≤d a(T1t(−1(cid:48)1r(cid:48)1−αec0=α)e0Pi)v2P+ePlro1g= 21c−−11αα+00. (α0+−α2)P +N2 SanindScteca3rαti=n0g=2−frNNoP1m22/P∈≥(cid:2)o0,f12r31.o(cid:3)m, itTafobllleowIIs, wtheatcca1n1e=xp12r−−esNNs22t//hPPe≥two25-, 10 R • dimensional outer bound region at R as (cid:18) (cid:19) 2 1 α P R10 ≤T10 = 2log 1+ N0 (26) (cid:26)1 (cid:18) 2P(cid:19) (cid:27) 1 R min log 1+ R ,C 1 2 1 ≤ 2 N − x decoded at receivers 1 and 2 1 • 2 (cid:26)1 (cid:18) P 7(cid:19) 1 (cid:18) P 4(cid:19)(cid:27) R2 ≤T2(cid:48) = 12log(cid:18)1+ α0Pα2+PN1(cid:19) (27) ≤min(cid:26)21log(cid:18)N1 ·23P(cid:19)−R2,2lo(cid:27)g N1 · 3 R2 ≤T2(cid:48)(cid:48) = 12log(cid:18)1+ α0Pα2+PN2(cid:19) (28) R3 ≤min(cid:26)12log(cid:18)1P+ N72(cid:19) −R2,1C3 (cid:18) P 4(cid:19)(cid:27) min log R , log . • x3 decoded at receivers 2 and 3 ≤ 2 N2 · 3 − 2 2 N3 · 3 (cid:18) (cid:19) 1 P R T = log c + Depending on the bottleneck of min , expressions, there 3 ≤ 3(cid:48) 2 3 (α +α )P +N {· ·} 0 2 2 are three cases: (cid:18) (cid:19) 1 P R3 ≤T3(cid:48)(cid:48) = 2log 1+ α2P +N3 (29) • R12lo≤g(cid:0)217l(cid:1)og(cid:0)R74(cid:1) 1log(cid:16)N3 7(cid:17) Notewthhaetre0c3 =c(1−α0P)P1,+Pc =+2−c1α0=. 1, and 1 c 1. •• R22 ≥ 124lo≤g(cid:16)NN232≤· 472(cid:17). N2 · 4 ≤ 11 ≤ 2 11 3 2 ≤ 3 ≤ (cid:16) (cid:17) Putting together, we can see that the following rate region is At R = 1log α2P 7 , the outer bound region is achievable. 2 2 N2 · 4 (cid:26) (cid:18) (cid:19) (cid:18) (cid:19)(cid:27) 1 P N 4 1 P 4 R1 ≤T1 =min{T1(cid:48)1,T1(cid:48)(cid:48)1}+T10 =T1(cid:48)(cid:48)1+T10 R1 min log 2 , log ≤ 2 α P · N · 3 2 N · 3 R T =min T ,T =T 2 1 1 2 ≤ 2 { 2(cid:48) 2(cid:48)(cid:48)} 2(cid:48)(cid:48) (cid:26)1 (cid:18) P 4(cid:19) 1 (cid:18) P 4(cid:19)(cid:27) R3 ≤T3 =min{T3(cid:48),T3(cid:48)(cid:48)} R3 ≤min 2log α P · 3 ,2log N · 3 . 2 3 where (cid:18) (cid:19) Depending on the bottleneck of min , expressions, we T = 1log c + (1−α0)P consider the following three cases: {· ·} 1 11 2 (α +α )P +N 0 2 2 +1log(cid:18)1+ α0P(cid:19) (30) • αN2P ≥αNP3 N 2 N • 2 ≤ 2 ≤ 3 1 α P N . 1 (cid:18) α P (cid:19) • 2 ≤ 2 T2 = 2log(cid:18)1+ α0P2+N2 (cid:19) (31) 1lCogas(cid:16)eα2i)Pα27P(cid:17) i≥s N3: The outer bound region at R2 = 1 P 2 N2 · 4 T log c + . (32) 3 3 ≥ 2 (α0+α2)P +N3 (cid:18) (cid:19) (cid:18) (cid:19) 1 P N 4 1 P 4 Thus, Theorem 8 is proved. R1 log 2 ,R3 log . (36) ≤ 2 α P · N · 3 ≤ 2 α P · 3 2 1 2 10 For comparison, let us take a look at the achievable rate Let us take a look at the achievable rate region. The first region. The first term of T is lower bounded by term of T is lower bounded by 1 1 T1(cid:48)(cid:48)1 = 121lloogg(cid:18)(cid:18)c211++Pα−2PPα−+2PN2(cid:19)N2 2(cid:19) ((3378)) T1(cid:48)(cid:48)1 = 121lloogg(cid:18)(cid:18)c211++Pα−2PPN−+2N(cid:19)2N2 2(cid:19) ((5523)) ≥ 12 (cid:18)5P (cid:19)3α2P ≥ 12 (cid:18)5P (cid:19)3N2 > log . (39) > log . (54) 2 3α2P 2 3N2 We get the lower bounds: We get the lower bounds: T =T +T (55) 1 1(cid:48)(cid:48)1 10 T1 =T1(cid:48)(cid:48)1+T10 (40) 1 (cid:18) P (cid:19) 1 (cid:18) N (cid:19) 1 (cid:18) P (cid:19) 1 (cid:18) N (cid:19) > log + log 1+ 2 (56) > log + log 1+ 2 (41) 2 3N2 2 N1 2 3α2P 2 N1 1 (cid:18) P (cid:19) 1 (cid:18) P N (cid:19) > log (57) > log 2 (42) 2 3N1 2 3α2P · N1 1 (cid:18)1 P (cid:19) 1 (cid:18)1 P (cid:19) T3 log + (58) T3 log + (43) ≥ 2 2 α2P +N2+N3 ≥ 2 2 α2P +N2+N3 1 (cid:18) P (cid:19) 1 (cid:18) P (cid:19) > log . (59) > log . (44) 2 3N3 2 3α P 2 (cid:16) (cid:17) For fixed α and R = 1log α2P , the following two- For fixed α2 and R2 = 12log(cid:16)α2N2P2(cid:17), the two-dimensional dimensional2rate regio2n is a2chievab2lNe.2 achievable rate region is given by (cid:18) (cid:19) (cid:18) (cid:19) 1 P 1 P R log , R log . (60) (cid:18) (cid:19) (cid:18) (cid:19) 1 3 1 P N 1 P ≤ 2 3N ≤ 2 3N R log 2 , R log . (45) 1 3 1 3 ≤ 2 3α2P · N1 ≤ 2 3α2P In all three cases above, by comparing the inner and outer bound regions, we can see that δ 1log(cid:0)3 4(cid:1) = 1, δ Cas(cid:16)eii)N2 (cid:17)≤α2P ≤N3:TheouterboundregionatR2 = 1log(cid:0)2 7(cid:1) = 0.91 and δ 11lo≤g(cid:0)23 4(cid:1) =· 31. Theref2or≤e, 1log α2P 7 is 2 · 4 3 ≤ 2 · 3 2 N2 · 4 wecanconcludethatthegapistowithinonebitpermessage. (cid:18) (cid:19) (cid:18) (cid:19) 1 P N 4 1 P 4 R log 2 , R log . (46) IV. INNERBOUND:CHANNELTYPE2 1 3 ≤ 2 α P · N · 3 ≤ 2 N · 3 2 1 3 Theorem 9: Given α [0,1], the region is defined by 1 α ∈ R Now, let us take a look at the achievable rate region. We (cid:18) (cid:19) 1 α P 1 have the lower bounds: R log 1+ 1 ≤ 2 N 1 T1 > 21log(cid:18)3αP2P · NN21(cid:19) (47) R2 ≤ 12log+(cid:18)12 + α1PP+N2(cid:19) 1 (cid:18)1 P (cid:19) 1 (cid:18)1 P (cid:19) T3 ≥ 2log 2 + α2P +N2+N3 (48) R3 ≤ 2log+ 2 + α1P +N3 , (cid:18) (cid:19) 1 P (cid:0)(cid:83) (cid:1) > 2log 3N . (49) and R= CONV α1Rα is achievable. 3 For fixed α and R = 1log(cid:16)α2P(cid:17), the two-dimensional A. Achievable Scheme achievable ra2te region2 is gi2ven by2N2 For this channel type, rate splitting is not necessary. Trans- R 1log(cid:18) P N2(cid:19), R 1log(cid:18) P (cid:19). (50) m1,i2t,s3ig.nIanlpxakrtiiscualacro,dxe2dasnigdnxal3oafreMlkat∈tic{e1-c,o2d,e.d..s,i2gnnRalks}u,skin=g 1 3 ≤ 2 3α P · N ≤ 2 3N the same pair of coding and shaping lattices. As a result, 2 1 3 the sum x +x is a dithered lattice codeword. The power Case iii) α P N : The outer bound region at R = 2 3 12log(cid:16)αN22P · 742(cid:17) is≤ 2 2 Eal[loxca3tio2n]=santiPsfi.eTshEe[(cid:107)rexc1e(cid:107)iv2e]d=siαgn1anlPs ,arEe[(cid:107)x2(cid:107)2] = nP, and (cid:107) (cid:107) 1 (cid:18) P 4(cid:19) 1 (cid:18) P 4(cid:19) y1 =[x2+x3]+x1+z1 R log , R log . (51) 1 3 ≤ 2 N · 3 ≤ 2 N · 3 y =x +x +z 1 3 2 2 1 2 For this range of α , the rate R is small, i.e., R = y3 =x3+x1+z3. 12log(cid:16)αN22P · 74(cid:17) ≤ 12l2og(cid:0)74(cid:1) < 12, a2nd R1 and R3 are c2lose The signal scale diagram at each receiver is shown in Fig. 3 to single user capacities C and C , respectively. (b). Decoding is performed in the following way. 1 3