ebook img

Approaching conformality in non-Abelian gauge theories PDF

175 Pages·2017·4.29 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Approaching conformality in non-Abelian gauge theories

Approaching conformality in non-Abelian gauge theories Nunes da Silva, Tiago Jose IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2016 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Nunes da Silva, T. J. (2016). Approaching conformality in non-Abelian gauge theories [Groningen]: University of Groningen Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 09-01-2017 Approaching Conformality in non-Abelian Gauge Theories PhD thesis to obtain the degree of PhD at the University of Groningen on the authority of the Rector Magnificus Prof. E. Sterken and in accordance with the decision by the College of Deans. This thesis will be defended in public on Friday 26 February 2016 at 12.45 hours by Tiago Jose Nunes da Silva born on 5 December 1986 in Jaboatão dos Guararapes, Brazil Supervisor Prof. E. Pallante Assessment Committee Prof. R.G.E. Timmermans Prof. V. Miransky Prof. B. Lucini ISBN 978-90-367-8648-5 (printed) ISBN 978-90-367-8647-8 (digital) Aosmeuspaiseà minhaavó Salete,comcarinho... ©2015–TiagoJoseNunesdaSilva allrightsreserved.Nopartofthispublicationmaybereproducedortransmit- tedinanyformorbyanymeanswithoutpermissionoftheauthorandthepub- lisherholdingthecopyrightofthepublishedarticles. ThisworkispartoftheresearchprogramoftheFoundationforFundamental ResearchonMatter(FOM),whichispartoftheNetherlandsOrganisationfor ScientificResearch(NWO). PrintedbyIpskampDrukkers,Enschede. Contents 0 Introduction 1 0.1 QuantumChromodynamicsinanutshell . . . . . . . . . . . . . . . . . . . . 2 0.2 ThePhaseDiagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 0.3 HigherDimensionalGroupRepresentationsandtheconnectiontophenomenology 22 0.4 LatticeMethods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 0.5 ThesisOutline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 1 TheStrongCouplingRegimeoftwelveflavourQCD 43 1.1 TheActions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 1.2 TheObservables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 1.3 Theeffectofimprovement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 1.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 2 OnTheParticleSpectrumandtheConformalWindow 61 2.1 Thespectrum:Theoreticalpremise . . . . . . . . . . . . . . . . . . . . . . . 62 2.2 Numericalsetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3 ApproachingConformality 105 3.1 NumericalSetup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 3.3 Discussionofthelatticeresults . . . . . . . . . . . . . . . . . . . . . . . . . . 122 3.4 Theanomalousdimensionofthescalarglueballoperatorinperturbationtheory andlarge-N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 4 ConcludingRemarks 133 AppendixA Samenvatting 141 AppendixB Acknowledgments 147 References 167 v Thereisaremarkablycloseparallelbetweentheproblemsofthephysicistand thoseofthecryptographer.Thesystemonwhichamessageisencipheredcor- respondstothelawsoftheuniverse,theinterceptedmessagestotheevidence available,thekeysforadayoramessagetoimportantconstantswhichhave tobedetermined.Thecorrespondenceisveryclose,butthesubjectmatterof cryptographyisveryeasilydealtwithbydiscretemachinery,Physicsnotso easily. AlanTuring 0 Introduction AncientGreeksandIndiansdevelopedtheatomistconcept140,228: thateverythinginnaturecon- sistedofsmall,immutableandindestructiblebasicparticlesofmatter. Ourunderstandingofthe fundamentalstructureofmatterhascomealongwaysincetheancientdays. Itissynthesisedin theStandardModelofParticlePhysics,whichamalgamatesthreeofthefourfundamentalforcesof nature,describedbygaugetheories: theStrong,ElectromagneticandWeakinteractions. Matteris constitutedbysixquarks(up,down,strange,charm,bottomandtop),eachinthreecolours,andsix leptons(electron,muon,tauandtheirrespectiveneutrinos).Vectorbosonsmediatetheinteractions betweentheparticles: thestronginteractionismediatedbyeightgluons,weakinteractionsbythe (cid:6) W andZbosons,andtheElectromagneticinteractionbythephoton. Theworkpresentedinthisthesisisdedicatedtofurtherunderstandingthestronginteraction. Morespecifically,itaimsatunderstandingthephasediagramofstronglyinteractingmatterandthe 1 phenomenonoftheemergenceofconformality. Alargepartoftheworkpresentedthroughthis bookisbasedonLatticeGaugeTheorymethods,whichareanonperturbativewaytonumerically studygaugetheories. ThischapterprovidesthereaderwithanIntroductiontothesesubjects. It startswithabriefoverviewofQuantumChromodynamics(QCD),thetheoryofstrongInterac- tions. Thiswillbefollowedbyatheoreticaloverviewoftheconjecturedpictureforthephasedi- agramofstronginteractionsandtheassociatedphenomenawhichplayaroleinitsshape. Itends withanintroductiontothelatticemethodsusedduringtheresearch. 0.1 QuantumChromodynamicsinanutshell QuantumChromodynamics(QCD)describesthefundamentalstronginteractionbetweenparticles thatcontainacolourcharge: quarksandgluons. Itisanon-Abeliangaugetheorywithsymmetry groupSU(3). QuarksaredescribedinQCDastwelvecomponentfieldstransforminginthefundamentalrep- resentationofthecolourSU(3)gaugegroup.TheyarerepresentedbyDirac4-spinors ψ(f)(x)α;c;ψ(f)(x)α;c; (1) wherexdenotesthespace-timeposition,α=1;2;3;4istheDiracindexandc=1;2;3(or,equiv- alently,c=red,green,blue)isthecolourindex. Quarksexistinnatureindifferentflavours,withsix flavoursbeingobservedsofarinnature.Theindexfrepresentstheflavourandingeneralrunsfrom 1tothetotalnumberofflavoursN usedinthecalculations. f GluonsaredescribedinQCDbygaugefieldswhichcarrytwocolourindices A (x) ; μ cd whereagainxisthespace-timecoordinate,canddarethecolourindicesandμisaLorentzindex indicatingthedirectionofdifferentcomponentsinspacetime.* *WewillworkinEuclideanspacetime.Therefore,theindexμisEuclideanandthemetrictensorreduces totheidentitymatrix. 2 TheQCDactioncanbewrittenas ∫ ( 1 ) [ ] ∑Nf ( ) S = d4x Tr F (x)F (x) + ψ(f)(x) γ (@ +iA (x))+m(f) ψ(f)(x): QCD 2g2 μν μν μ μ μ f=1 (2) Thefirsttermontheright-handsideofequation2isthegluonicpartoftheaction,describinggluon propagationandgluoninteraction,andthesecondtermcorrespondstothefermionicpart,includ- ingquarkfieldsandtheirinteractionwiththegluons†. ThequantitygisthestrongcouplingconstantofQCDandF isthegluonfield-strengthtensor μν [ ] [ ] F (x)=(cid:0)i D (x);D (x) =@ A (x)(cid:0)@ A (x)+i A (x);A (x) ; (3) μν μ ν μ ν ν μ μ ν heredefinedintermsofthecovariantderivative D (x)=@ +iA (x): (4) μ μ μ Theγ-matricesintheactionareEuclideanversionsoftheMinkowskiγ-matricesoftheDiracequa- tion. Theyare4(cid:2)4matricesinDiracspace,obeyingtheEuclideananti-commutationrelations { } γ ;γ =2δ I; (5) μ ν μν andtheymixthedifferentDiraccomponentsofthequarkfields. TheactioninEquation2isobtainedthroughageneralisationofthegaugeinvarianceofelectro- dynamics,byrequiringinvarianceunderlocalrotationsamongthequarkscolourindices,i.e.,we requiretheactiontobeinvariantunderthetransformation ψ(x)!ψ′(x)=Ω(x)ψ(x); ψ′(x)=ψ(x)γ Ω(x)y: (6) 0 Here,Ω(x)are3(cid:2)3independentcomplexmatriceschosenateachspacetimepointxactingonthe red,greenandbluecolourcomponentsofψ. Theyarerequiredtosatisfytheunitaritycondition Ω(x)y = Ω(x)(cid:0)1 andtohavedet[Ω(x)] = 1. TheseΩ(x)matricesconstitutethedefiningrep- resentationofthespecialunitarygroupSU(3),the3beingrelatedtothematricesdimension. The †Becausegluonscoupletothemselves,relevantcouplingsarisefromnon-lineartermsinthefieldstrength. ThispropertyofQCDistheorigintoitsseveralnon-trivialfeatures 3

Description:
Theories built from non-Abelian gauge theories are usually referred to as. Yang-Mills theories .. quenched QCD301. Dynamical fermions in the fun-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.