Approaches to the Description of Anisotropic Material Behaviour at Finite Elastic and Plastic Deformations | Theory and Numerics | Nikolas Apel PSfrag replacements ’ F = ’ r X x C;Gp g;cp B S f(x;¥(x)) = f(Q?x;¥(Q?x)) Q 8 2 G Bericht Nr.: I-12 (2004) Institut fu˜r Mechanik (Bauwesen), Lehrstuhl I Professor Dr.-Ing. C. Miehe Stuttgart 2004 Approaches to the Description of Anisotropic Material Behaviour at Finite Elastic and Plastic Deformations | Theory and Numerics | Von der Fakulta˜t Bau- und Umweltingenieurwissenschaften der Universita˜t Stuttgart zur Erlangung der Wu˜rde eines Doktor-Ingenieurs (Dr.-Ing.) genehmigte Abhandlung vorgelegt von Nikolas Apel aus Ulm Hauptreferat : Prof. Dr.-Ing. Christian Miehe Korreferat : Prof. Dr. rer.nat. Bob Svendsen Tag der mu˜ndlichen Pru˜fung: 28. November 2003 Institut fu˜r Mechanik (Bauwesen) der Universita˜t Stuttgart 2004 Herausgeber: Prof. Dr.-Ing. habil. C. Miehe Organisation und Verwaltung: Institut fu˜r Mechanik (Bauwesen) Lehrstuhl I Universita˜t Stuttgart Pfafienwaldring 7 70550 Stuttgart Tel.: ++49{(0)711/685{6378 Fax : ++49{(0)711/685{6347 c Nikolas Apel (cid:176) Institut fu˜r Mechanik (Bauwesen) Lehrstuhl I Universita˜t Stuttgart Pfafienwaldring 7 70550 Stuttgart Tel.: ++49{(0)711/685{6326 Fax : ++49{(0)711/685{6347 ˜ Alle Rechte, insbesondere das der Ubersetzung in fremde Sprachen, vorbehalten. Ohne Genehmigung des Autors ist es nicht gestattet, dieses Heft ganz oder teilweise auf fo- tomechanischem Wege (Fotokopie, Mikrokopie) zu vervielfa˜ltigen. ISBN 3-937859-00-4 (D 93 Stuttgart) Zusammenfassung Die vorliegende Arbeit befa…t sich mit rein makroskopischen Beschreibungen richtungs- abh˜angigen Materialverhaltens. Zentrale neue Entwicklungen liegen auf dem Gebiet der Theorie und Numerik anisotroper flniter Plastizit˜at. Nach einer Diskussion der grund- legenden Konzepte zur Klassiflzierung von Materialien anhand von materiellen Symme- triegruppen sowie der Zusammenstellung der Konzepte zur Formulierung isotroper Ten- sorfunktionen und -polynome werden alternative makroskopische Formulierungen flniter Plastizit˜at diskutiert. Formulierungen auf der Basis der multiplikativen Zerlegung des De- formationsgradientenineinenelastischenundplastischenAnteilfu˜hrenaufneundimensio- nale Flie…regeln und erlauben die Abbildung der plastischen Rotation. Im Gegensatz dazu steht die Beschreibung der plastischen Deformation mittels einer plastischen Metrik. Fu˜r letzteresfu˜hrtdieWahllogarithmischerVerzerrungenunddieadditiveZerlegungdertota- lenVerzerrunginelastischeundplastischeAnteileaufeineKlassevonMaterialgesetzenim logarithmischen Verzerrungsraum. Sie zeichnet sich durch einen modularen Aufbau und Strukturen und Algorithmen ˜ahnlich zu denen der geometrisch linearen Theorie aus. Auf der numerischen Seite werden implizite und explizite Integrations- und Spannungsaufda- tierungsalgorithmen fu˜r anisotrope Plastizit˜at bereit gestellt. Eine sorgf˜altige Konstrukti- on dieser Algorithmen ist von entscheidender Bedeutung fu˜r die E–zienz der numerischen Simulationen. Besonderes Augenmerk wird auf Algorithmen fu˜r Variationsformulierungen gelegt. Bedingt durch die inh˜arente (inkrementelle) Potentialstruktur arbeiten diese mit symmetrischen Gr˜o…en und ben˜otigen daher weniger Speicherplatz und L˜oserkapazit˜at als klassische, unsymmetrische Verfahren. Abstract The present work deals with purely macroscopic descriptions of anisotropic material be- haviour. Key aspects are new developments in the theory and numerics of anisotropic plasticity. After a short discussion of the classiflcation of solids by symmetry transfor- mations a survey about representation theory of isotropic tensor functions and tensor polynomials is given. Next alternative macroscopic approaches to flnite plasticity are discussed. When considering a multiplicative decomposition of the deformation gradient into an elastic part and a plastic part, a nine dimensional (cid:176)ow rule is obtained that allows the modeling of plastic rotation. An alternative approach bases on the introduction of a metric-like internal variable, the so-called plastic metric, that accounts for the plastic de- formation of the material. In this context, a new class of constitutive models is obtained for the choice of logarithmic strains and an additive decomposition of the total strain measure into elastic and plastic parts. The attractiveness of this class of models is due to their modular structure as well as the a–nity of the constitutive model and the algo- rithms inside the logarithmic strain space to models from geometric linear theory. On the numerical side, implicit and explicit integration algorithms and stress update algorithms for anisotropic plasticity are developed. Their numerical e–ciency crucially bases on their careful construction. Special focus is put on algorithms that are suitable for variational formulations. Due to their (incremental) potential property, the corresponding algorithms can be formulated in terms of symmetric quantities. A reduced storage efiort and less required solver capacity are key advantages compared to their standard counterparts. Acknowledgements The work presented in this thesis was carried out in the years between 1999 and 2003, when I was a co-worker at the Institute of Applied Mechanics (Chair I) at the University of Stuttgart. At the end of this period I feel grateful to a lot of people who accompanied me in these flve years. First of all, I want to thank my academic teacher Professor Christian Miehe for his scientiflc support and for the fruitful discussions we had. Without his research in the fleld of Applied Mechanics this thesis could not have achieved these results. My special thanks also go to Professor Bob Svendsen for his interest in my research and for acting as the external examiner of this thesis. Next I want to thank my fellow workers at the institute, who were mainly responsible for the friendly atmosphere within the institute. Especially, I would like to express my gratitude to my room mate Matthias Lambrecht for the support he gave me and the many discussions we had. Parts of this thesis are based on scientiflc results he was mainly involved with. Furthermore, I would like to thank Andreas Koch for the good collaboration and the many interesting discussions about a lot of mechanical topics. I am also very grateful to Grieta Himpel for her incessant interest in mechanical and computational problems throughout the years which is also true to Sonja Baumberger, whom I supervised during her diploma thesis, too. Their interest on high-end topics of theoretical and computational mechanics led to many interesting and helpful discussions that helped me to see some things more clearly. I want to thank my wife Heidi for giving me moral support in all these years. She kept my options open from many everyday-life problems and thus had a great share in the accomplishment of my research activities. Last but not least I should like to thank my father Karlheinz for the great help he gave me at the proof-reading stage as well as Dominik Zimmermann for his support regarding organizational matters. Stuttgart, January 2004 Nikolas Apel Contents I Contents 1. Introduction: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 2. Fundamentals of Continuum Mechanics : : : : : : : : : : : : : : : : : : : : : : : : : 7 2.1. Finite Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1. Representation, Transformation and Rotation of Tensorial Objects . 7 2.1.2. Motion of a Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2. Notion of Stresses and Heat Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.1. Stresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.2. Heat Flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3. Balance Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1. Balance of Mass. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.2. Balance of Linear Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.3. Balance of Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.4. Balance of Total Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.5. Balance of Entropy and Second Law of Thermodynamics . . . . . . . . 19 2.4. Constitutive Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.4.1. Principle of Material Objectivity . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.4.2. Material Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3. Material Symmetries | Classiflcation of Solids : : : : : : : : : : : : : : : : : : 23 3.1. Construction of a Space Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2. Symmetry Transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.1. Rotations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.2. Rotation-Inversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.3. Tensor Representations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.4. Symmetry Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3. The 14 Bravais Lattices and 7 Crystal Systems. . . . . . . . . . . . . . . . . . . . 26 3.3.1. Triclinic Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.3.2. Monoclinic Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.3. Orthorhombic Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.4. Tetragonal Symmetry. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.3.5. Cubic Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.6. Trigonal and Hexagonal Symmetry . . . . . . . . . . . . . . . . . . . . . . . 29 3.3.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4. The 32 Crystal Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.4.1. The Motif | Inner Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . 32 II Contents 3.4.2. Notation of Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.5. Icosahedral, Cylindrical and Spherical Symmetry Classes. . . . . . . . . . . . . 32 3.6. Classiflcation into 14 Types of Anisotropy . . . . . . . . . . . . . . . . . . . . . . . 35 4. Representations of Anisotropic Tensor Functions : : : : : : : : : : : : : : : : : 37 4.1. Deflnitions and Notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2. Isotropic Extension of Anisotropic Tensor Functions . . . . . . . . . . . . . . . . 38 4.3. Isotropic Functions of First- and Second-Order Tensors . . . . . . . . . . . . . . 39 4.3.1. Wang’s Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3.2. Smith’s Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.3.3. Comparison of the Results Obtained by Wang and Smith . . . . . . . 46 4.4. Isotropic Polynomials of First- and Second-Order Tensors . . . . . . . . . . . . 46 4.4.1. Deflnitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.4.2. Integrity Basis for Sets of First-Order Tensors . . . . . . . . . . . . . . . 47 4.4.3. Isotropic Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 4.4.4. Integrity Bases for Sets of First-Order and Second-Order Tensors . . 49 4.5. Irreducibility of Integrity Bases and Functional Bases . . . . . . . . . . . . . . . 51 4.6. Quadratic Functions of a Symmetric Second-Order Tensor . . . . . . . . . . . . 52 4.6.1. Triclinic Functions | Symmetry Group . . . . . . . . . . . . . . . . . . 53 i C 4.6.2. Monoclinic Functions | Symmetry Group . . . . . . . . . . . . . . . 55 2h C 4.6.3. Orthorhombic Functions | Symmetry Group . . . . . . . . . . . . . 57 2h D 4.6.4. Tetragonal Functions | Symmetry Group . . . . . . . . . . . . . . . 58 4h C 4.6.5. Tetragonal Functions | Symmetry Group . . . . . . . . . . . . . . . 60 4h D 4.6.6. Trigonal Functions | Symmetry Group . . . . . . . . . . . . . . . . . . 61 6 S 4.6.7. Trigonal Functions | Symmetry Group . . . . . . . . . . . . . . . . . 63 3d D 4.6.8. Hexagonal Functions | Symmetry Group . . . . . . . . . . . . . . . 65 6h C 4.6.9. Hexagonal Functions | Symmetry Group . . . . . . . . . . . . . . . 66 6h D 4.6.10.Cubic Functions | Symmetry Group . . . . . . . . . . . . . . . . . . . 68 h O 4.6.11.Cubic Functions | Symmetry Group . . . . . . . . . . . . . . . . . . . 69 h T 4.6.12.Transversely Isotropic Functions | Symmetry Group . . . . . . . 70 h C1 4.6.13.Transversely Isotropic Functions | Symmetry Group . . . . . . 71 h D1 4.6.14.Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5. Anisotropic Elasticity : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 75 5.1. General Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.2. Model Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 5.2.1. Fiber-Reinforced Technical Rubber . . . . . . . . . . . . . . . . . . . . . . . 76 5.3. Numerical Example: Tension Test of a Fiber-Reinforced Bar . . . . . . . . . . 77