ebook img

Approach to ground state and time-independent photon bound for massless spin-boson models PDF

1.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Approach to ground state and time-independent photon bound for massless spin-boson models

Approach to ground state and time-independent photon bound for massless spin-boson models W. DeRoeck1 Institut fu¨r TheoretischePhysik Universita¨tHeidelberg Philosophenweg16, D69120Heidelberg,Germany A. Kupiainen2 Departmentof Mathematics 2 Universityof Helsinki 1 0 P.O.Box 68,FIN-00014,Finland 2 n u J 4 Abstract: Itiswidelybelievedthatanatominteractingwiththeelectromagneticfield(withtotalinitialenergy well-belowthe ionization threshold) relaxestoitsground statewhile itsexcessenergyisemitted asradiation. ] h Hence, for large times, the state of the atom+field system should consist of the atom in its ground state, and p a few free photons that travel off to spatial infinity. Mathematically, this picture is captured by the notion - h of asymptotic completeness. Despite some recent progress on the spectral theory of such systems, a proof of t relaxationto the ground state and asymptotic completeness was/is still missing, except in some special cases a m (massivephotons,smallperturbationsofharmonicpotentials).Inthispaper,wepartiallyfillthisgapbyproving relaxationtoaninvariantstateinthecasewheretheatomismodelledbyafinite-levelsystem. Ifthecoupling [ tothefieldissufficientlyinfrared-regularsothatthecoupledsystemadmitsagroundstate,thenthisinvariant 2 statenecessarilycorrespondstothegroundstate. Assumingslightlymoreinfraredregularity,weshowthatthe v number of emitted photons remainsbounded in time. We hope thatthese results bring a proof of asymptotic 2 completenesswithinreach. 8 5 5 . 1 Model and result 9 0 1 1.1 Introduction 1 : v This paper fits into a broader project of rigorously controlling interacting Hamiltonian systems that exhibit i irreversiblebehavior. Fromamoreconcretepointofview,theproblemtreatedhereisinspiredbynonrelativistic X QEDwhich, inthelasttwodecades,hasproventobeafruitfultestinggroundformathematicaltechniquesin r a quantum field theory (for an overview, see the book [29]) Sacrificing precisionfor the time being, the setup is asfollows. We consideramodelofanatominteractingwiththe electromagneticfield(or, ascalarfield, aswe will assume in this paperfor the sake of simplicity). The field is describedby the Hamiltonian H on Hilbert F spaceH ,itisnon-interactinganddescribesfreelypropagatingscalarbosonswithalineardispersionlaw(the F polarization of the photons does not play a crucial role in the physical problem, hence we omit it from our model). Thejointdynamicalsystem(atom+field)isdescribedbyaHamiltonianH onaHilbertspaceH and thefieldiscoupledinanontrivialwaytotheatom. Furthermore,weassumethattheatomcannotbeionized, i.e.intheabsenceofcouplingitsspectrumisdiscrete. Wewishtoaddressthelongtimebehaviorofthesystem. 1email: [email protected] 2email: [email protected] 1 1.1.1 Approachto astationary state LetO be a localobservableinB(H ) (i.e.bounded operatorson H) thatshould bethought of asprobingthe atom and the field in its spatial vicinity. Let Ψ H, Ψ = 1 be the initial state vector (0 refers to time 0 0 ∈ k k t = 0)andΨ := e−itHΨ isthetime-evolvedstatevector. Weconsidertheexpectationvalue( , isthescalar t 0 h· ·i product) O := Ψ ,OΨ (1.1) t t t h i h i Asexplainedintheabstract,wesubstantiatetheclaimthatthisexpressionconvergestoanasymptoticvalue,as t . i.e. O O andthat O isindependentofΨ . IftheHamiltonianH admitsagroundstateΨ , t ∞ ∞ 0 gs →∞ h i →h i h i i.e.E = infσ(H)isaneigenvalue,thenthisimpliesthat O = Ψ ,OΨ sinceonecanchooseΨ = Ψ . gs ∞ gs gs 0 gs h i h i In particular, this means that the eigenvalue E is simple and that H cannot have any other eigenvalues. It gs is this last claim that has been established up to now in great generality. In fact, one can even prove that H has absolutely continuous spectrum, apart from the simple eigenvalue E , see [3, 12, 13, 5]. However, this gs seems not sufficient to prove that (1.1) converges as t , because e−itH appears twice in this expression → ∞ (!). Let us immediately add that we find it not at all inconceivable that there is some easy way around this problem, allowingtoapplythe techniques usedforthe spectralanalysisofH todeterminetheasymptotics of (1.1). However,thisisnotthestrategyofthepresentpaper. Weprovetheconvergencetoanasymptoticvalue, O O notbyspectralconsiderations,butbyexhibitingexplicitlytheirreversibledensitymatrixevolution t ∞ h i →h i Ψ Ψ Ψ Ψ . IfH istooinfrared-singulartoadmitagroundstate,thentheconvergence O O 0 0 t t t ∞ | ih | → | ih | h i → h i canstillholdprovidedthattheobservableO’doesnotsee’thelow-energeticphotons. Inthatcasetheasymptotic value O isastate(apositive,normalizedfunctionalinO)thatisnotoftheform O = Ψ ,OΨ . From ∞ ∞ gs gs h i h i h i thepointofviewofourtechnique,thiscaseisnodifferentfromtheinfrared-regularcase. Finally, we mention that the problem of ‘return to equilibrium’ at positive temperature has been studied withmuchmoresuccesssinceinthatcase,theproblemcanindeedbereducedtothestudyofthespectrumof anoperator-theso-calledstandardLiouvillian-actingonanappropriateHilbertspace,see[7]forreferences.For ourtechnique,thereisnodifferencebetweenzeroandpositivetemperature,andthepresentresultonapproach toastationarystatewas,uptosomeirrelevantdetails,infactalreadycontainedin[7]. 1.1.2 Scatteringtheory Let us again assume that H admits a ground state Ψ (and no other eigenstates). The intuition is that the gs evolvedstatevectorΨ should,atlargetimest,looklikethegroundstatewithafewfreephotonsthattraveloff t toinfinity. To make this intuition more precise, one introduces an identification operator J : H H , such that id F → J Ω = Ψ with Ω the field vacuum and in general J maps photon state vectors Ψ into state vectors that id gs id F we think of as ’ground state together with a free photon wavepacket Ψ ’. One defines the asymptotic wave F operatorsW+,W−by W±Ψ := lim eit(H−Egs)J e−itHFΨ (1.2) F id F t→±∞ for Ψ in a dense domain. Asymptotic completeness (AC) asserts that the operators W± : H H exist F F andareunitary. ThemainunprovenaspectofthisstatementisRanW± = H. Indeed,whatcanha→ppeninthe presenceof(massless)photonsisthatΨ =e−itHΨ willcontainevermore(ast )photonswitheversmaller t 0 energies. ButifthisisthecasethenΨ =eitHΨ canclearlynotequalW+Ψ fo→ra∞nyΨ H . Forthisreason 0 t F F F ∈ itisimportanttoboundthenumberofphotonsofthestatevectorΨ . Indeed,ifoneeliminatesthesoftphotons, t eitherbymakingthemmassiveorbyintroducingasharpinfraredcutoffinthecoupling,thenallquestionscan beansweredandinparticularACfollows, see[11,16]. Ourresultprovidesastrongexponentialbound ofthe form Ψ ,eκNΨ C with κ a small positive constant and C independent of time. We believe that with this t t h i ≤ bound as an input, a proof of asymptotic completeness is within reach (see e.g. [15]) and we hope to pursue thisinasubsequentpaper. Apartfromthecaseofmassivebosons,asymptoticcompletenesscanbeestablished if the particle is a harmonic oscillator and the coupling to the field is linear, so that the full Hamiltonian can be explicitly diagonalized[2]. Smallperturbations(due tosmall anharmonicities in the particle potential) can be handled by an expansion introduced in [23], see [28]. Of course, if one considers models not described by quantum field theory, for example; N-particlequantum mechanics, more results areavailable and we referto [11]formorereferencesandbackground. 2 1.2 Setup LetH beaHilbertspace(modelingthesmallsystem)withaself-adjointHamiltonianH . Thefieldisgivenby S S theone-particledispersionrelation q andtheHamiltonianofthewholefieldisgivenby | | H := dq q a∗a (1.3) F ZRd | | q q acting on the bosonic (symmetric) Fock spaceH = Γ(h) with h = L2(Rd) the one-particlespace. Herea∗,a F q q are the creation/annihilation operators (actually, operator-valued distributions) of a mode with momentum q Rd satisfying the canonical commutation relations [a ,a∗ ] = δ(q q′). We refer to e.g. [9] for a review ∈ q q′ − of these notions and precise definitions. The Hilbert space of the total system consisting of small system and field, is H = H H , and we simply write H and H for the operatorsH 1 and 1 H acting on H. S F S F S F ⊗ ⊗ ⊗ For simplicity, the coupling between field and the small system is assumed to be linear in the creation and annihilationoperatorsandoftheformλH ,withλ Ra(small)couplingconstantand I ∈ H =D dq φ(q)a∗+φ(q)a , (1.4) I ⊗ZRd (cid:16) q q(cid:17) forsome φ handHermitianmatrixD = D∗ B(H ). Ourtechniqueworksequallywellifoneconsidersa S ∈ ∈ finitesumofsuchinteractionterms,orifoneaddsasufficientlysmallquadraticinteractionterm,butweprefer tokeepthesetupaselementaryaspossible. TheformaltotalHamiltonianofthesystemishence H :=H +H +λH , on H. (1.5) S F I ToconstructH rigorously,weassumethroughoutthat 1 1 φ,(1+ )φ h = dq(1+ )φ(q)2 < . (1.6) h |q| i ZRd |q| | | ∞ whichyields,byastandardestimate: HIΨ 2 2 D φ,(1+1/q )φ h Ψ,HFΨ C Ψ,HFΨ , forΨ Dom(HF) (1.7) k k ≤ k kh | | i h i≤ h i ∈ ItfollowsthatH isaninfinitesimalperturbationofH andbytheKato-Rellichtheorem,theHamiltonianH is I F self-adjointonDom(H +H ). S F The following assumption isthekeyingredientof our analysis, asitexpressesthatcorrelationsofthe free fieldvanishintimesufficientlyfast. AssumptionA(Decayofcorrelationfunctions). dt(1+t)α h(t) < , with h(t):= dqe−it|q| φ(q)2, (1.8) ZR+ | | ∞ ZRd | | forsomeα>0. Thisassumptionimpliessomeinfraredregularityofthemodel. Inparticular,ifitissatisfiedwithα 1,then ≥ theHamiltonianH hasagroundstate3,asonecanestablishby,forexample,thetechniquesin[17,18,4,14,1]. InSectionC,wegiveaconditionontheformfactorthatissufficientforAssumptionAtohold. The next assumption is meant to exclude situations in which the atom is poorly coupled to the field. In particular, if the function φ(q) vanishes identically, then one cannot expectrelaxationto the ground state, and this should surely be excluded. We assume that σ(H ), the spectrum of H , is nondegenerate, and let P for S S e e σ(H )bethecorresponding(one-dimensional)spectralprojectors. Weintroducethenonnegativenumbers S ∈ j(e,e′):=Tr[PeDPe′DPe]hˆ(e e′), (1.9) − 3In fact, weaker conditions suffice for the existence of a ground state. For example, discontinuities in the formfactorφcaninvalidateourresults(seeSection1.5.1),buttheexistenceofthegroundstatedependssolely onthebehaviorofφnear0. 3 where hˆ(ε) = ∞ dteitεh(t) is well-defined by virtue of Assumption A. It can be written in a more intuitive −∞ fashionas2π dqδ(q (e e′)) φ(q)2,whichonerecognizesasthetextbookFermiGoldenRuleexpression RRd | |− − | | forascatteringrate. Onededucesthatj(e,e′)=0whenevere′ e. Physically,thisexpressesthatthefieldisin R ≥ thevacuumstateanditcanonlyabsorb(andnotemit)energy. AssumptionB(FermiGoldenRule). WeassumethatthespectrumofH isnon-degenerate(alleigenvaluesaresimple) S and we let e := minσ(H ) (atomic ground state energy). Most importantly, we assume that for any eigenvalue e 0 S ∈ σ(H ),e=e ,thereisasequencee(i),i=1,...,nofeigenvaluessuchthat S 0 6 e=e(1)>e(2)>...>e(n)=e , and i=1,...,n 1:j(e(i),e(i+1))>0 (1.10) 0 ∀ − withj(, )asdefinedabove. · · The numbers j(e,e′) should be viewed as ’jump rates’: We define the one-dimensional spectral projector P = Ω Ω B (H ) with Ω the vacuum vector in the Fock space H . If the joint atom-field system is Ω 1 F F | ih | ∈ described by the density matrix ρ = P P at time t = 0, then formal perturbation theory (Fermi Golden 0 e Ω ⊗ Rule)suggeststhattheprobabilitytofindtheatominstatee′ =eatalatertimet>0,is 6 Tr[Pe′e−itHρ0eitH]=j(e,e′)(λ2t)+ ((λ2t)2) (1.11) O Therigorousversionofthisformula,giveninProposition3.3,isacrucialingredientofouranalysis. 1.3 Initial states and observables Wenowdefinetheclassofinitialstatesρ andobservablesOthatweconsider. Forψ h,let (ψ) B(H )be 0 F ∈ W ∈ theWeyloperator (ψ)=eiΦ(ψ), Φ(ψ):= dq ψ(q)a∗+ψ(q)a (1.12) W q q Z (cid:16) (cid:17) We use ⋉,⋊ as labels to denote objects characterizing the initial state (‘left boundary’) and observable (‘right boundary’). Wepickψ⋉,ψ⋊ h,anatomobservableOS B(HS)andadensitymatrixρS,0 B1(HS),i.e.such ∈ ∈ ∈ thatTrρ =1andρ 0. Thenweput S,0 S,0 ≥ O :=OS (ψ⋊), ρ0 :=ρS,0 (ψ⋉)PΩ ∗(ψ⋉). (1.13) ⊗W ⊗W W IfρS,0 = ψS,0 ψS,0 forsomeψS,0 HS,thenρ0 = Ψ0 Ψ0 withΨ0 =ψS,0 (ψ⋉)Ωandthisisassumedfor | ih | ∈ | ih | ⊗W simplicityinthenextsection(fornotationalconvenience,weusethegeneralcaseinlatersections). Weneedto assumesomeregularitypropertiesonψ⋉,ψ⋊: AssumptionC(Regularityofinitialstatesandobservables). dt(1+ t)α h⋉(t) < , with h⋉(t):= φ,e−i|q|tψ⋉ h (1.14) R | | | | ∞ h i Z + dt(1+ t)α h⋊(t) < , with h⋊(t):= φ,ei|q|tψ⋊ h (1.15) R | | | | ∞ h i Z + sup h✶(t)(1+t)α < , with h✶(t):= ψ⋉,ei|q|tψ⋊ h (1.16) | | ∞ h i t≥0 forα>0. Throughoutourpaper,wealwaysassumethatAssumptionsAandCaresatisfiedwiththesameparameter α>0. Thisisdoneforthesakeofsimplicity,thoughitslightlyweakenstheresult(seeRemark1.4below). 4 1.4 Results Write Ψ := e−itHΨ for some initial vector Ψ H and H as defined in (1.5). We define the Weyl algebra t 0 0 ∈ Wα,α > 0tobetheC∗-algebrageneratedby’atomic’observablesA andWeyl-operators (ψ⋊)with ⊗1 1⊗W ψ⋊ hsatisfying(1.15). ∈ Theorem 1.1. Assume that AssumptionA and Assumption B are satisfied. Then, thereis a λ > 0 such that, for any 0 couplingstrength0< λ λ ,thefollowingholdstrue: 0 | |≤ 1) ThereisaboundedlinearfunctionalO O onW suchthat ∞ α 7→h i lim Ψ ,OΨ = O (1.17) t t ∞ t→∞h i h i foranyinitialvectorΨ H with Ψ =1andO W . 0 0 α ∈ k k ∈ 2) LetΨ0 =ψ Ω, Ψ0 =1bethenormalizedgroundstateoftheuncoupledHamiltonianH +H andletObe gs e0⊗ k gsk S F oftheform(1.13)withψ⋊ satisfying(1.15),then O Ψ0 ,OΨ0 = (λmin(2α,1)), λ 0 (1.18) h i∞−h gs gsi O | | → 3) IfOandΨ0(thatis: theψ⋉,ψ⋊ thatdeterminethem)satisfythethreeboundsofAssumptionC,then O Ψ ,OΨ (t−α), t (1.19) ∞ t t |h i −h i|≤O →∞ Remark1.2. Onecouldbetemptedtointerpretthefunctional astheexpectationinthegroundstateofthecoupled ∞ system,butthisisnotcorrectsince,forα<1,thecoupledsystemh·idoesingeneralnothaveagroundstateinH (although agroundstatedoesexistintheHilbert spacecorrespondingtoa differentrepresentationoftheoperatoralgebra). Onthe otherhand,ifthesystemdoesadmitagroundstateΨ H,thenbychoosingΨ =Ψ ,(1.17)immediatelyimpliesthat gs 0 gs ∈ O = Ψ ,OΨ . ∞ gs gs h i h i Oursecondresultboundsthenumberofemittedbosons. LetN benumberoperatorontheFockspaceH . F Theorem1.3. AssumethatAssumptionA forsomeα > 0andAssumptionB aresatisfied. Then, thereareλ′,κ′ > 0 0 0 suchthat,foranycouplingstrengthλwith0<|λ|≤λ′0,complexnumberκwith|κ|≤κ′0,andinitialvectorΨ0withψ⋉ satisfyingthebound(1.14)inAssumptionC,wehave Ψ ,( eκN)Ψ C˘exp C t(1−min(α,1)) , t 0 (1.20) t t h 1⊗ i ≤ | | ≥ (cid:12) (cid:12) (cid:16) (cid:17) wheretheconstantC˘ depends(cid:12)onΨ ,butC doesn(cid:12)ot(andnoneofthemdependsonλ,κort). Inparticular,ifα 1,then 0 ≥ theLHSisboundeduniformlyintime. Remark1.4. AsindicatedbelowAssumptionC,weprefertokeeponeconstantαthroughoutthepaper.Letusdescribethe possibleimprovementofTheorem1.3ifweweretodropthisconstraint. AssumeagainthatAssumptionAholdsforsome α > 0 and assume thethe bound (1.14) in AssumptionC is satisfied for some α⋉ > 0, thenthe photonnumber bound (1.20)stillholdswithαdeterminedbyAssumptionA,regardlessofthevalueofα⋉. Thisisclearfromtheinspectionofthe lastpartoftheproofofTheorem1.3inSection4.2.3. 1.5 Discussion of the results 1.5.1 QuadraticHamiltonians The easiest way to understand our results and the different conditions involved, is to compare them to an integrablemodelwherethesamequestionscanbeasked. ConsidertheformalHamiltonian H = dq q a∗a + dq φ(q)a∗+φ(q)a , φ h (1.21) | | q q q q ∈ Z Z (cid:16) (cid:17) 5 whichfitsintoour frameworkbytakingH = C(inthatcaseH isanirrelevantnumber). Bycompletingthe S S square(which,inthiscontext,isaspecialcaseofa’Bogoliubovtransformation’)wecanrewriteitas φ(q) φ(q)2 H =E + dq q b∗b , b :=a + , E := dq| | (1.22) gs | | q q q q q gs − q Z | | Z | | Ifφ handφ/ q h,thenthetermlinearina/a∗ isaninfinitesimalperturbationofthequadraticterm(the ∈ | | ∈ firsttermin(1.21)). TheoperatorH isselfadjointonthedomainofthequadratictermanditisboundedbelow p byE > . Ifmoreoverφ/q h,thenH hasanormalizablegroundstate,givenby gs −∞ | |∈ Ψ :=e−kφ/|q|k2 (φ/q )Ω, (1.23) gs W | | withtheWeyloperator (ψ),ψ hasdefinedinSection1.3. Werefertoe.g.[8]foranextendedandrigorous W ∈ discussionofquadraticHamiltonians. LetuslookintoergodicpropertiesoftheevolutiongeneratedbyaquadraticHamiltonian. Letψ⋊ L2,and ∈ considertheobservableO = (ψ⋊). Thenbyexplicitcalculation W Ω,eitHOe−itHΩ =e−kψ⋊k2e2iRehψ⋊,(eit|q|−1)|φq|i (1.24) h i Recallthecorrelationfunctionh⋊(t)= ψ⋊,eit|q|φ fromAssumptionC.Clearly,ifh⋊ L1(R,dt),thentheRHS h i ∈ of(1.24)convergesast .Inparticular,thiscanbetrueevenwhenφ/q h,thatis,ifH hasnogroundstate. →∞ | |6∈ Onecaneasilyconvinceoneselfthatthet -asymptoticsof(1.24)doesnotchangeifweconsiderageneral → ∞ initialstate ρ0 = Ψ0 Ψ0 with Ψ0 = (ψ⋉)Ω, Ψ0 = 1and ψ⋉ such thath⋉(t) = φ,e−it|q|ψ⋉ isintegrable | ih | W k k h i andh✶(t)= ψ⋉,eit|q|ψ⋊ vanishesatinfinity. Next,westudythenumberofemittedphotons h i φ Ω,eitHeκNe−itHΩ = Ω,exp κ dk(a +ϕ (k))∗(a +ϕ (k)) Ω , ϕ :=(1 eit|q|) (1.25) k t k t t h i h i − q (cid:18) Z (cid:19) | | t t = exp ϕ 2(eκ 1) =exp (eκ 1) ds ds′h(s s′) (1.26) t k k − − − (cid:18) Z0 Z0 (cid:19) (cid:0) (cid:1) It is clear that this expression remains bounded if (and only if) φ/q L2, hence if H has a ground state. | | ∈ Moreover,weseethattherateofgrowthoftheLHSof(1.20)inTheorem1.3correspondsroughlytoestimating h(s s′)by h(s s′) intheintegral. − | − | 1.6 Plan of the proof Ourtworesults,relaxationtothegroundstateandthephotonbound,areverysimilarfromthetechnicalpoint ofview,eveniftheirphysicalmeaningpossiblyisnot. Forthisreason,wefocusexclusivelyontherelaxationto thegroundstateinthepresentsection,andwedevoteafewwordstothephotonboundattheend. The proof relies on the following philosophy. The original problem is formulated as a perturbation (with smallparameterλ)ofanintegrableHamiltonianH +H whosedynamicsdoesnothavethephenomenonthat S F wewanttoexhibit: itdoesnotrelaxintothegroundstate. Thiscanalreadybeseenbyremarkingthattheatom S is not coupled to the field F and, as the former is finite-dimensional, its dynamics is oscillatory. However, the Fermi Golden Rule (1.11) provides us with a picture that does capture the dissipative behavior: The fact thatthestateoftheatomchangesbyjumpsbetweeneigenstatesoftheHamiltonianH suggeststhefollowing S approximation. ρ e−itad(HS)+λ2tMρ P (1.27) t S,0 Ω ≈ ⊗ whereM isthegeneratorofadissipativedynamicsthatwecanlooselydescribeastheMarkovjumpprocesson eigenstatesofH withjumpratesgivenby(1.11)andexponentialdecayoftheoff-diagonal(inH -basis)partof S S thedensitymatrix.Theapproximationbecomesexact(atleastasfarastheS-stateisconcerned),asλ 0,t → →∞ suchthattλ2isheldfixed. ThiswasalreadyadvocatedbyVanHove[19]anditwasmadeprecisebyDavies[6]. WestateitexplicitlyinProposition3.3andwereviewtheproofinAppendixB. The underlying physical reason why (1.27) is a good approximation is that P is invariant under the free Ω F-dynamicsandanydisturbanceinthefieldcausedbySiscarriedaway(disperses)tospatialinfinityquickly, 6 suchthatitisirrelevantforthefurtherevolution,andonecanpretendthatthestateofthefieldremainsP . The Ω dispersive property is a consequence of the temporal decay of field correlations for the uncoupled dynamics, whichisourAssumptionA.ItisthereforeplausiblethattheevolutionofSisMarkovianontimescaleslonger thanthetimenecessaryforafieldexcitationtodisperseaway Theapproximatedynamicsin(1.27)exhibitsrelaxationtotheprojectionontothe(uncoupled)groundstate ψ Ω provided that sufficiently many jump rates are nonzero; this is captured by the Fermi Golden Rule e0 ⊗ AssumptionB. In a nutshell, our strategy is to use the dynamics (1.27) as a zero-orderterm of our expansion for the full dynamics. Note thatour expansion isnot simply in powersof the coupling constant λ; the exponentin (1.27) clearlyhaszerothandsecond ordercontributions inλ. The reasonwe referto(1.27)aszerothorderisthatall othercontributionstothedynamicsaresmallcomparedtothisterm,orrather,toitsdissipativeeffect. BecauseofthejumpsdescribedbyM,thedynamics(1.27)isstochasticandhenceourtaskreducestocon- trolling a small perturbation (the realdynamics at finite but small λ) of a stochastic evolution. This is quite a tractableproblemthatcanbehandledbyanalyticperturbationtheoryofisolatedeigenvaluesandaclusterex- pansion. Similarexpansionsweredevelopede.g.in[24,20]and,verycloselytothesetupofthepresentpaper, in[26,7]. ThemainresultofthisexpansionisthatwemanagetorepresentTrρ Oasaone-dimensionalpolymergas t (this dimension corresponds to time). Then the problem of showing that there is a well-defined and unique asymptoticstateisanalogoustotheproblemofprovingdecayofcorrelationsintheone-dimensionalgas. Moreprecisely,thepolymerrepresentationis Tr(ρtO)=k⋉k⋊ v(A), fort=n/λ2 (1.28) A A∈A X Y wherethesumisovercollections ofsetsA 0,1,...,n,n+1 suchthatforanytwosetsA ,A ,dist(A ,A )> 1 2 1 2 A ⊂{ } 1wherewewritedist(A ,A )=min i j .ThesetsAarecalledpolymers,thenumbersv(A)arepoly- 1 2 i∈A1,j∈A2| − | merweights. Moreover,onlythev(A)with0 A,(n+1) Adependontheinitialstate,resp.theobservable. ∈ ∈ Toagoodapproximation(theerrormadeisnotimportantforthepresentdiscussion), k⋉ ∼Trρ0, k⋊ ∼Tr[(Pe0 ⊗PΩ)O] (1.29) Ourgoalistoprovethat lim Tr(ρ O)=Tr(ρ ) O (1.30) t 0 ∞ t→∞ h i where O doesnotdependonρ . Settingallv(A) = 0essentiallyamountstopretendingthatρ = P P h i∞ 0 t e0 ⊗ Ω forallt. InthatcaseTr(ρtO) = k⋉k⋊ andtheexpectationvalueoftheobservableisindependentof theinitial state,apartfromthetrivialnormalizationfactork⋉. ThepolymersAcontaincorrectionstothispicture. These correctionsoriginatefromthefluctuationsoftheMarkoviandynamicsgeneratedbyM andfromthecorrections totheMarkovianbehavior(1.27). Pictorially,letA = τ ,τ ,...τ withτ τ ,thenv(A)describescorrel- 1 2 m i i+1 { } ≤ ated deviations from the assumption that ρ = P P in the time-interval Dom(τ ),...,Dom(τ ), where t e0 ⊗ Ω 1 m−1 Dom(τ ) (1/λ2)[τ 1,τ ]. Thedetailedconstructionofthepolymerrepresentation(1.28)iscarriedthrough m m m ≡ − inSection2. To prove decay of correlations, we use a standard cluster expansion, which we review in Appendix A. A possible condition for the applicability of the cluster expansion method is the ”Kotecky-Preiss” criterion. Appliedtoourmodel,itdemandsthat, v(A)ea(A) a(A′), (1.31) ≤ A:distX(A,A′)≤1 withA,A′ 1,...,n anda()ann-independentpositivefunctiononpolymers. Weformulate(1.31)(together ⊂{ } · with some other statements) in Lemma 2.4. In our case a(A) ǫC A where ǫ = λ2min(α,1) can be seen as a ≡ | | | | renormalizedcouplingconstant. ToprovethattheKotecky-Preisscriterion(1.31)issatisfied,weuseaDyson(orDuhamel)expansion,itrelies onthesmallnessofthecouplingconstantλandthedecayoffieldcorrelations.Thisisintuitive;ifthecorrelations of the freefield decayroughly ast−(1+α) (cfr.Assumption A) then one could conjecture, for example, that for A = τ ,τ also the weight v(A) decays as (dist(Dom(τ ),Dom(τ )))−(1+α) as τ τ . This picture 1 2 1 2 2 1 { } − → ∞ 7 turnsout tobeessentially correct. Infact, we get v( τ ,τ ) Cǫ(τ τ )−(1+α). This analysis(proofofthe 1 2 2 1 | { } | ∼ − Kotecky-Preisscriterion)isaccomplishedinSection3.1. In the concluding Section 4, we prove our results. The main point of this section is to pinpoint how the clusterexpansiongivesrisetodecayofcorrelations. Suchreasoningiscompletelystandardinhigh-temperature expansionsofstatisticalphysics,seee.g.[27]. Toprovethephotonbound,weuseananalogousapproachbutthistimewedevelopapolymerrepresenta- tionlike(1.28)forthequantityTr(ρ eκN). Infact,inourproofs,weprovideonegeneralpolymerrepresentation t forTr(Oe(κ/2)Nρ e(κ/2)N)andthenwesetκ=0tostudyTr(ρ O)andO= tostudyTr(ρ eκN). t t t 1 Intherestofthepaper,weassumethatAssumptionsA,BandCaresatisfiedforα>0andalltheLemmata willdependonthisparameterα. Acknowledgements W.D.R.isgratefultothepeoplewhoexplainedhimscatteringinquantumfieldtheory. Inparticular,heprofited a lot from discussions and collaboration with J. Derezin´ski over the past years, and from exchanges with W. Dybalksi, J. Fro¨hlich, M. Griesemer and B. Schlein. More generally, we would like to thank J. Fro¨hlich and I. M.Sigalforbringingtheseproblemstotheattentionofthemath-physcommunity,startingmorethanadecade ago. WethanktheEuropeanResearchCouncilandtheAcademyofFinlandforfinancialsupport. 2 Polymer Representation In this section, we complete the first important step of our proof, namely we rewrite all quantities of interest throughapolymerrepresentation.First,letusdiscretizetimebyintroducingamesoscopictimescaleλ−2,where λ > 0isthe coupling strength. Thatis, weconsider timesof the formt = n/λ2 withn N (thediscretization ∈ willbeeasilyremovedattheendoftheargument). Themainquantitythatwestudyis Z =Z (O,ρ ,κ):=Tr Oe(κ/2)Ne−i(n/λ2)Hρ ei(n/λ2)He(κ/2)N (2.1) n n 0 0 h i whereN isthenumberoperatorontheFockspaceH andκ Cisasufficientlysmallparameter.Theoperators F ∈ ρ andOaretheinitialstates,respectivelyobservableconstructedasinSection1.3. 0 As announced, we develop a polymer representation for Z . In fact, we will first construct a polymer n representationwithoperator-valuedpolymerweights.Inthisrepresentation,thepolymerscorrespondtodeviations fromMarkovianbehavior. ThisisdescribedinSection2.1. Boundsontheoperator-valuedpolymerweightsare statedin2.2buttheirproofisdeferredtoSection3. Thenwedefinethe’true’(scalar)polymerrepresentationforZ byaddingtheexcitationsoftheMarkovian n approximationtothealreadydefinedoperator-valuedpolymers. ThisisdoneinSection2.3. Whythisleadsto scalar polymers will be explained there. Finally, we need to provide bounds on the scalar polymers in order to satisfy the Kotecky-Preiss criterion. These bounds follow from the bounds on the operator valued poly- mer weights and this is described in Section 2.4. In all of the following sections, we preferto treat’bulk’ and ’boundary’-polymersseparately,wheretheterms’bulk’and’boundary’refertothetime-dimension. Theana- lysisofthebulkpolymersisthemoresubtlepieceofworkbutthetreatmentoftheboundarypolymersdemands additionalnotation. Thereforewetreattheformerfirst,andthenindicatethe(inallcasesquiteminimal)changes necessaryforthelatter. 2.1 Operator valued polymer model 2.1.1 Definition of the deformeddynamics Starting from (2.1), we would like to move the deformation parameter κ into the dynamics e−itH. Given an operatorX,weintroducetheleft,rightandtwo-sidedmultiplication,actingonoperatorsρ (X)ρ:=Xρ, (X)ρ:=ρX, (X)ρ:=XρX. (2.2) L R M 8 DefiningtheLiouvillianL=ad(H)= (H) (H)withH asin(1.5),wemayrewrite(2.1)as L −R Z =Tr O (e(κ/2)N)e−i(n/λ2)Lρ . (2.3) n 0 M h i Weformallydefinethedeformed(notself-adjoint)Hamiltonian H =e(κ/2)NHe−(κ/2)N (2.4) κ andthedeformedLiouvillian L := (H ) (H )= (e(κ/2)N)L (e−(κ/2)N). (2.5) κ κ −κ L −R M M Then,formally (e(κ/2)N)e−itL (e−(κ/2)N)=e−itLκ (2.6) M M whichwouldallowtorewrite Z =Tr Oe−i(n/λ2)Lκ (e(κ/2)N)ρ . (2.7) n 0 M h i To make these manipulations precise note first that relying on the relative boundedness of e(κ/2)NH e−(κ/2)N I w.r.t.H +H ,whichfollowsfrom(1.6),itiseasytoconstructH andL asunboundedclosedoperatorsand S F κ κ to show that they form an analytic family (in κ) of class A in the sense of Kato [21]. Then (2.7) is a simple consequenceofthefunctionalcalculusincaseκ iR. TheupcomingLemma2.1givesaconstructivemeaning ∈ toitforarbitraryκandprovidesanexpansionthatwewilluseinpractice. Tostatethislemma,weneedafew additionaldefinitions. First,someadditionalLiouvillians: L :=ad(H ), L :=ad(H ), L :=λad(H ) (2.8) S S F F I I and L (s):= (e(κ/2)N)eis(LS+LF)L e−is(LS+LF) (e−(κ/2)N). (2.9) I,κ I M M Defining Φ (ψ,s) := e(κ/2)Neis(HS+HF)Φ(ψ)e−is(HS+HF)e−(κ/2)N κ = dq(eis|q|+κ/2ψ(q)a∗+e−is|q|−κ/2ψ(q)a ) (2.10) q q Z wehave L (s)=λ eisLS(D) Φ (φ,s) eisLS(D) Φ (φ,s) . (2.11) I,κ κ −κ L ⊗ −R ⊗ For Ψ H, we decompose Ψ = (cid:0) Ψ where Ψ(cid:1) = 1(cid:0) Ψ, i.e. Ψ H(cid:1) H with H H the m-b∈oson sector, see e.g. [9] for mmor∈eNdemtails. Definme the d[Nen=sme]subspacemD∈(HS)⊗ BF,m(H )to beF,tmhe⊂spacFe 1 1 consistingoffinitelinearcombinatiPonsofrank-oneoperators Ψ Ψ′ satisfying ⊂ | ih | Cm m N:max( Ψ , Ψ′ ) , forsome C >0 (2.12) ∀ ∈ k mk k mk ≤ √m! Lemma2.1. TheLHSofequation(2.6)definesanoperator e−itLκ :D (H) D (H ) 1 1 → forallκ Candt R. Givenρ D1(H )themapκ e−itLκρisholomorphicfromCtoB1(HS). Moreoveronthis ∈ ∈ ∈ 7→ domain e−i(t1+t2)Lκ =e−it1Lκe−it2Lκ (2.13) and e−itLκρ=e−it(LS+LF) ( i)m dt ...dt L (t )...L (t )L (t )ρ (2.14) 1 m I,κ m I,κ 2 I,κ 1 − mX∈N 0<t1<Z...<tm<t wherethem=0-termontheRHSisunderstoodtoequalρandsumsandintegralsconvergeabsolutely. Finally,theRHS ofeq. (2.7)iswelldefinedand(2.7)holds. 9 Proof. StartingfromL =L +L +λL ,anditeratingtheDuhamelformula κ S F I,κ t e−itLκρ=e−it(LF+LS)ρ i dse−i(t−s)LκL e−is(LF+LS)ρ (2.15) I,κ − Z0 we formallyarriveat(2.14). Hence, the only nontrivial claimin the lemma is the absolute convergence of the serieson the RHS of (2.14) andthe factthat itbelongs toD (H). We referto [10] for an explicitproof, which 1 reliesexclusivelyonthewell-knownestimate dqψ(q)a#q Ψm ≤√m+1kΨmkH dq|ψ(q)|2, fora# =a,a∗ (2.16) (cid:13)Z (cid:13)H Z (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) (cid:13) Hence,inwhatfollows,wefreelyusetheoperatorse−itLκ andthegroupproperty(2.13). 2.1.2 Splitting of the dynamics WedefinethereduceddynamicsQ :B (H ) B (H )oftheatom; t 1 S 1 S → Q ρ :=Tr [e−itLκ(ρ P )] (2.17) t S F S Ω ⊗ whereTr : (H) (H )isthepartialtraceandthewell-definednessoftheRHSfollowsfromLemma2.1. F 1 1 S B →B AlargepartofouranalysisservestoprovethatQ tendstoaone-dimensionalprojectionast . t →∞ WestartbyrewritingZ in(2.7). RecallL =ad(H )andintroduceoperatorsU withτ N. n F F τ ∈ U = ei(τ/λ2)LFe−i(1/λ2)Lκe−i((τ−1)/λ2)LF (2.18) τ ThemotivationforthisdefinitionisthattheproductofU telescopesinto τ U ...U =ei(n/λ2)LFe−i(n/λ2)Lκ. (2.19) n 1 Inparticular,ifwechooseρ =ρ P andO =O theneq. (2.7)becomes 0 S,0 Ω S ⊗ ⊗1 Z =Tr [O Q ρ ] (2.20) n S S n/λ2 S,0 andhenceinthiscasethestudyofZ reducestothestudyofQ . Themainideaofourapproachisthat,atleast n t qualitatively,themaincontributiontoQ canbeinferredbyapproximatingQ by(Q )n. Werename n/λ2 n/λ2 1/λ2 T :=Q andwedefinethe’excitationoperators’ 1/λ2 B =U T (2.21) τ τ − ⊗1 Our taskis tounderstand how the behaviorof Tn ismodified bythe excitationoperatorsB . To quantifythe τ influenceofthelatter,wenowdevelopaformalism. 2.1.3 Correlation functions of excitations Weabbreviate R =B(B (H )), R =B(B (H )) (2.22) S 1 S F 1 F Define,forW,W′ R R theobject S F ∈ ⊗ W W′ R R R S S S F ⊗ ∈ ⊗ ⊗ asanoperatorproductinF-partandtensorproductinS-part.Concretely,letW =W W andW′ =W′ W′. S⊗ F S⊗ F Then W W′ :=W W′ W W′. ⊗S S⊗ S⊗ F F 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.