ebook img

Applying the q-algebras U'_q(so_n) to quantum gravity: towards q-deformed analog of SO(n) spin networks PDF

0.23 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Applying the q-algebras U'_q(so_n) to quantum gravity: towards q-deformed analog of SO(n) spin networks

APPLYINGTHEq-ALGEBRASUq′(son)TOQUANTUMGRAVITY q U′(so ) APPLYING THE -ALGEBRAS q n TO QUANTUM q GRAVITY: TOWARDS -DEFORMED ANALOG SO(n) 1 OF SPIN NETWORKS A. M. GAVRILIK UDC538.9;538.915;517.957 Bogolyubov Institute for Theoreti al Physi s, Nat. A ad. S i. of Ukraine (cid:13) 2002 (14b, Metrolohi hna Str., 03143 Kyiv,Ukraine) 4 0 0 2 Nonstandardq-deformedalgebrasUq′(son),proposedade adeago 2. Simple G = SO(n) Spin Networks n for the needs of representation theory, essentially differ from the a J sUta(snodna)rdanDdrpinofsesleds(cid:22)sJwimithboreqguaardnttuomthdeefloartmteartaionnuomfbtehreoafligmebproars- GLe=tuSsOfir(nst)brieflydwelluponne essarysetup on erning 15 Utaq′n(tsoand)v,anwtiathgeins.tWweoddqisif fuesrsenptos soibnlteexaDtpsploi faqtiuoannotufmth/eDqq-d-≥aelfgo3erbmreads A gGeneraspliiznednestpwionrknse.twork asso iated with a Lie gravity: one on erns -deforming of -dimensional ( ) eu- group , a ording e.g. to [7℄, is defined as a triple (Γ,ρ,I) 1 lidean gravity, the other applies tog2+1 anti-de Sitter quantum where v gravity (with spa e surfa e ofgenus )intheapproa h ofNelson Γ isanorientedgraph,formedbydire tededgesand 7 andRegge. 6 vertρi es; e 0 is a labeling of ea h edge by an irredu ible rep- ρ G 1 resentation (irrep) e of ; I v Γ 0 is a labeling of ea h vertex of by an intertwin- 4 Iv v ner mapping tensor produ t of irreps in oming at 0 v 1. Introdu tion to the produ t of irreps outgoing from . / c Below,weareinterestedinthespinnetworksforthe q G=SO(n) Constru tion of quantum gravity belongs to most fun- parti ularLiegroup .Moreover,likein[7℄,we - G = SO(n) r damental problems of modern quantum theory. During onsider restri ted ase of simple spin net- g G=SO(n) : last de ade and a half, new perspe tive tools for atta k- works.Simplespinnetworksasso iatedwith v i ingandsolvingthisproblemhaveappearedamongwhi h aSrOe(env)a/lSuOat(end−as1F)eynmanintegralsoverStnh−e1 osetspa e X we mention, first, the notion of spin networks (see e.g., , i.e. over the sphere . Simpli i- SO(n) r [1℄) losely onne tedwithloopquantumgravityaswell ty means that onSlOy(tnh−e1) representationsof lass 1 a as with the so- alled BF-type topologi al theories, and, (withrespe tto )labeledbysinglenonnegative l se ond, the powerful methods of quantum groups and integer , are employed. quantum algebras[2 (cid:22) 5℄. Our goal in this ontribution Basi ingredient is the `propatngla(tyo)r,' yex=prceossseθd in isto onsiderpotentialappli abilityoftheso- allednon- terms of zonal spheri al fun tions 00 , or, q U′(so ) standard -deformed algebras q n introdu ed in [6℄ in view of the equality [8℄ whi haredifferentfromthestandard(Drinfeld(cid:22)Jimbo) tNl(cosθ)= Γ(2p)l! Cp(cosθ) , p=(N −2)/2 , quantum deformation [2, 3℄ of the Lie algebras of or- 00 Γ(2p+l) l (1) thogonal groups, while possess a number of rather im- portant advantages. Here we intend to make a prelimi- dire tly through the Gegenbauer polynomials: D N +2m−2 narystepstowardsextendingthe -dSiOm(eDns)ionalversion G(N)(x,y)= C(N−2)/2(x·y) . of spin networks (more on retely, simple spin m N −2 m (2) U′(so ) networks) to the ase of q n related formulation. In Cp(x), l ≥0 the se ond part of our ontribution, we briefly dis uss HeretheGegenbauerpolynomials m ,satisfy U′(so ) the appearan e of the q n algebras in the ontext the defining re ursion relation (l+1)Cp (x)= of anti-de Sitter 2+1 quantum grgavity formulated with l+1 spa en-p=ar2tgb+ein2g fixed as genus Riemann surfa e so 2(p+l)xCp(x)−(2p+l−1)Cp (x) that . l l−1 (3) 1Presented at the XIIIth International HutsulianWorkshop (cid:16)Methods ofTheoreti al and Mathemati al Physi s(cid:17) (September 11 (cid:22) 242000,Uzhgorod (cid:22)Kyiv(cid:22)Ivano-Frankivsk(cid:22)Rakhiv,Ukraine) anddedi atedtoProf.Dr.W.Kummerontheo asionofhis65th birthday. ISSN 0503-1265. Óêð. iç. æóðí. 2002. Ò. 47, N 3 213 A.M.GAVRILIK Cp(x) = 1 g =(m +m +m )/2 g−m ≥0 augmented with the initial value 0 , and obey where 1 2 3 is an integer, i , i=1,2,3, p=(N −2)/2 the orthogonality relation and . N =4 1 For , Z (l+1)Clp(x)Cmp(x)(1−x2)p−12dx= θ(4)(m ,m ,m )=(m +1)(m +1)(m +1). −1 1 2 3 1 2 3 (10) πΓ(2p+l) =δ · . There exist a number of other results on erning (sim- lm 22p−1l!(l+p)Γ2(p) (4) SO(n) ple) spin networks, for generi situation as well n=3,4 asfortheparti ular asesof ,whi hwehowever Anotherimportantpropertyisgivenbythelinearization shall not dis uss here further. formulafortheprodu toftwoGegenbauerpolynomials, namely q 3. -Deformed Analog of Spin Networks from l+m q (n+p)Γ(n+1)Γ(g+2p) Cp(x)Cp(x)= × -ultraspheri al Polynomials l m [Γ(p)]2(g+p)!Γ(n+2p) n=X|l−m| q To deal with -deformed ase we need some fa ts on- q Γ(g−l+p)Γ(g−m+p)Γ(g−n+p) erning -ultraspheri al polynomials. These are defined × Cp(x) Γ(g−l+1)Γ(g−m+1)Γ(g−n+1) n (5) through the following re ursion relations: (1−qn)C (x;β|q)=2x(1−βqn−1)C (x;β|q) n n−1 g ≡ 1(l+m+n) where n2 and the sum ranges olv+ermth+onse −(1−β2qn−2)C (x;β|q), (n≥2), n−2 valuesof whi hareofthe sameevennessas . (11) One of basi onstru ts in spin networks is the so- Θ alled -graphwhose evaluation is given by the expres- along with spe ial values sion C (x;β|q)=1, C (x;β|q)=2(1−β)x/(1−q). 0 1 1 (12) D(l,m,n;p):=Z Clp(x)Cmp(x)Cnp(x)(1−x2)p−12dx.(6) β =qλ q →1 −1 With , the " lassi al"limit yields q→1 C (x;β|q)−−→Cλ(x). The result of evaluation is n n (13) 21−2pπ Γ(g+2p) D(l,m,n;p)= × q [Γ(p)]4 Γ(g+p+1) The expli it expression for the -ultraspheri al polyno- mials is [9℄ as follows: Γ(g−m+p)Γ(g−n+p) × . n (β;q) (β;q) Γ(g−l+1)Γ(g−m+1)Γ(g−n+1) (7) C (x;β|q)= k n−kei(n−2k)θ n (q;q) (q;q) kX=0 k n−k Using (6) one easily dedu es the re urren e relation for D(l,m,n;p) (β;q) the in the form = neinθ Φ (q−n,β;β−1q1−n;q,qβ−1e−2iθ). 2 1 l+1 2p+l−1 (q;q)n (14) D(l+1,m,s;p)+ D(l−1,m,s;p)= p+l p+l (a;q) n In this formula, the notation means: s+1 2p+s−1 = D(l,m,s+1;p)+ D(l,m,s−1;p) 1, n=0 p+s p+s (8) (a;q)n =(cid:26)(1−a)(1−qa)...(1−qn−1a), n≥1.(15) (remarkthat in 4 dimensions all the multipliers be ome It should be noted that it is also possible to present equTalhtuos,1)Θ.-graph θ(N)(m1,m2,m3) is nothing but in- Cn(x;β|q) in th4eΦf3orm3wΦh2i h employs basi hypergeo- metri fun tion or , see [9, 10℄. tegral of the produ t of three normalized propagators q Orthogonalityrelationsforthe -ultraspheri alpoly- defined in (2): nomials are of prin ipal importan e. They are given by θ(N)(m ,m ,m )= 1 2 3 the relation π 3 Γ(g+2p)Γ(p+1) (m +p)Γ(g−m +p) = i i , Cm(cosθ;β|q)Cn(cosθ;β|q)Wβ(cosθ|q)dθ = Γ(g+p+1)Γ(2p) Γ(p+1)Γ(g−m +1) (9) Z iY=1 i 0 214 ISSN 0503-1265. Óêð. iç. æóðí. 2002. Ò. 47, N 3 APPLYINGTHEq-ALGEBRASUq′(son)TOQUANTUMGRAVITY δmn 1−β2qm−1 = , + D (m−1,n,s,λ)= hn(β|q) (16) 1−βqm q where the weight fun tion and the normalization fa tor 1−qs+1 = D (m,n,s+1,λ)+ are as follows: 1−βqs q (e2iθ,e−2iθ;q) ∞ W (cosθ|q)= , β (βe2iθ,βe−2iθ;q)∞ (17) 1−β2qs−1 + D (m,n,s−1,λ). 1−βqs q (22) (q,β2;q) (q;q) (1−βqn) ∞ n h (β|q)= , n 2π(β,βq;q) (β2;q) (1−β) (18) ∞ n q Likewise,one an get evaluationfor other parti ular( - deformed analogsof) spin networks. with (a ,a ;q) :=(a ;q) (a ;q) , 1 2 ∞ 1 ∞ 2 ∞ q 4. Covarian e with Respe t to -algebras ∞ (a;q) := (1−aqk). ∞ kY=0 Ourmain on ernhereisaqpossible relationofthis stuff to quantum groups and/or -algebraswhi h orrespond SO(n) to the orthogonal Lie groups and their orre- Linearization formula is another important fa t about q sponding Lie algebras. As it was shown by Sugitani in -ultraspheri alpolynomials.Itisgivenbythefollowing [11℄,zonalspheri alfun tions asso iatedwith aparti u- Rogers' formula [9℄: SN lar realization q of quantum spheres are proportional C (x;β|q)C (x;β|q)= q m n to the -ultrapsheri al polynomials, that is min(m,n) (q-)zonal spher. fun . ↔Ck(N−2)/2(Y;q2) . = A (β|q)C (x;β|q) m,n,k m+n−2k (19) Uq(son) Xk=0 To this eqnd, one starts with sStOan(dna)/rdSO(n−1) and on- stru tsa -analogofthe oset bymeans U (so ) SO(n) q n with the notation of ( orSrOes(pnon−d1in)g to ) and a oideal ( or- (β;q)m−k (β;q)n−k (β;q)k responding to ): A (β|q)= × m,n,k (q;q)m−k (q;q)n−k (q;q)k e ,...,e ,f ,...,f ,θ ,θ ,qǫ2−1,...,qǫn−1 , 2 n 2 n 1 2 q−1 q−1 (q;q) (β2;q) 1−βqm+n−2k D E ×(β2;q)mm++nn−−22kk (βq;q)mm++nn−−kk 1−β . (20) Jq := for Bn(n>1) and Dn(n>2) series, (23) hθ i for N =3 1 q NaDnoaw(lmoigt,nios,fsnΘ,oλ-tg)hr=aarpdht(o9o),bntaaimnetlhyeresultforthe -deformed hθ1,θ2,qqǫ2−−11i for N =4 . q Here π = C (x;β|q)C (x;β|q)C (x;β|q)W (cosθ|q)dθ = s·e1+(−1)n−1t·q1/2qǫ1f2···fnfn···f2f1 m n s β Z  for B (n>1) series, 0 n = 2π ((βq,,ββ2q;;qq))∞∞((ββq2;;qq))gg((qβ;;qq))gg−−nn((qβ;;qq))gg−−mm((qβ;q;)qg)−g−ss,(21) θ1 :=sf·oer1D+n(−(n1)>n−22)t·sqeǫr1iefs2,···fn−1fnfn−2···f2f1 m+n+s=2g g ≥m g ≥n g ≥s oRw1bhe−v eiurqoermussi+o1snymremlateitornyfuonrd,Derqeixs ohba,tnaginees:dm,in↔then.f↔oNromsti ↔e tmhe. ss··ee11++tt··qq1ǫ1/f2q2ǫ1f(1N =(N4)=; 3), D (m+1,n,s,λ)+ 1−βqm q (24) ISSN 0503-1265. Óêð. iç. æóðí. 2002. Ò. 47, N 3 215 A.M.GAVRILIK t·q1/2qǫ1f1+(−1)n−1s·e2···enen···e2e1 at n=4 the q-algebraUq′(so4) in addition involves:  for B (n>1) series, θ2 :=t·qǫ1f1n+(−1)n−2s·e2···en−1enen−2···e2e1 [[[III344+232,,,III443+322]]]qqq ===III434+223,,, [[[III344++131,,,III443++311]]]qqq ===III434++113,,, [[[III244++121,,,III442++211]]]qqq ===III424++112,,, for D (n>2) series, n t·qǫ1f1+s·e2 (N =4), [[II44+32,,II23+11]]==0(q, −[Iq3−2,1I)(4+I12]1=I403−, I32I4+1). (25) ThefirstrIel+ationin(27)isviewedasdefinitionforthird As follows from the results of [11℄, this left oideal sub- generator 31; with this, the algebrais given in terms of q q U′(so ) balrgaebUrq′a(s oonin) firdoemsw[6qit℄.hNthoetenaolnssotathnadtartdhis-dsaemfoermneodnsatlagne-- er- aotomrmI3−u1ta=to[rIs2.1,DIqu32→a]lq− q1o−pw1yhio fheqnter3sthinevroellvaetsiotnhsesgaemne- dard (or twisted) -deformed oideal subalgebra arises as(27),butIw+ithI+ . Similar remarksapply to the [12, 13℄ when one onstru (tns)a/SqOua(nn)tum analogueof the generatoUrs′(s4o2,) 41, as well as (dual opy of) the whole symmetri oset spa e SU . algebra q 4 . 5. The q-algebra Uq′(son) (Bilinear 6. Deformed Algebras A(n) of Nelson and Formulation) Regge (2+1) Along with the definition inqterms of tUril′i(nseoar)relations For Λ < 0-dimensional gravity with osmologi al on- originally given in [6℄, the -algebra q n may be stant , the Lagrangian density involves spin on- ω ea a,b = 0,1,2 ab equivalently defined in terms of `bilinear' formulation. ne tion and dreibein , , ombined in k>l+1, 1≤k,l≤n SO(2,2) ω AB Tothis end, thegenerators(set ) the -valued(anti-deSitter)spin onne tion Ik±,l ≡[Il+1,l,Ik±,l+1]q±1 ≡ of the formω 1ea ω = ab α , ≡q±1/2I I± −q∓1/2I± I AB (cid:18) −α1eb 0 (cid:19) l+1,l k,l+1 k,l+1 l+1,l I ≡ I+ ≡ I− and is given in the Chern(cid:22)Simons (CS) form [17, 18℄ are introdu ed together with k+1,k k+1,k k+1,k. α 2 Then, the bilinear formulation of the q-algebra Uq′(son) 8(dωAB− 3ωAF ∧ωFB)∧ωCDǫABCD. reads: A,B =0,1,2,3 η =(−1,1,1,−1) [I+ ,I+] =I+ , [I+,I+ ] =I+ , Here ,themetri is AB , lm kl q km kl km q lm Λ and tΛhe=C−S 1oupling onstant is onne ted wiSthO(2,,2s)o [I+ ,I+ ] =I+ if k >l >m, that 3α2. The a tion is invariant under , km lm q kl leadstoPoissonbra ketsandfieldequations.Theirsolu- [I+,I+ ]=0 if k>l>m>p or k>m>p>l; tions, i.e. infinitesimal onne tions, des ribe spa e-time kl mp (26) whi h is lo ally anti-de Sitter. [I+,I+ ]=(q−q−1)(I+I+ −I+I+ ) if k>m>l>p. To des ribe global features of spa e-time, within kl mp lp km kp ml fixed-time formulation, of prin ipal importan e are the S : I− integrated onne tions whi h provide a mapping Analogoussetofrelationsexistswhi hinvolves kl along π1(Σ) → G q → q−1 ′ Σ of theGh=omSoLtop(2y,Rgr)o⊗upSLfor(a2,sRp)a e surfa e with (qde→not1e this (cid:16)dual(cid:17) set by (2′6)). In the into the group + − (spinorial SO(2,2) ` lassi al' limit , both (26) and (26) redu e to so overingof ) and thoroughlystudied in [19℄. To n those of . n = 3 q U′(so ) generatethealgebraofobservables,onetakesthetra es For instan e, at , the -algebra q 3 is iso- 1 c±(a)=c±(a−1)= tr[S±(a)] morphi [14℄ to qthe Fairlie (cid:21) Odesskii algebr[aX[,1Y5,] 1≡6℄ 2 q (re all that the - ommutator is defined as q1/2XY −q−1/2YX ): where [I ,I ] =I+, [I ,I+] =I , [I+,I ] =I ; a∈π , S± ∈SL (2,R). 21 32 q 31 32 31 q 21 31 21 q 32 (27) 1 ± 216 ISSN 0503-1265. Óêð. iç. æóðí. 2002. Ò. 47, N 3 APPLYINGTHEq-ALGEBRASUq′(son)TOQUANTUMGRAVITY g = 1 Σ A(n) For (torus) surfa e , the algebra of (indepen- 7. UIs′o(smoor)phism of the Algebras and dent) quantumobservableshasbeenderived[19℄,whi h q n turned out to be isomorphi to the y li ally symmet- A(n) ri Fairlie (cid:21) Odesskii algebra [15, 16℄. This latter alge- Toestablishisomorphism[21℄betweenthealgebra q biraal,nho=we3ve ra,seisokfnUoqw′(nsonto). Sooin, niadteur[1a4l℄qwueitshtiotnhearsipsees- fUrqo′(mson()30o)neahnads ttohemankoensthtaenfdoallrodwin-gdetfwoormsteedpsa.lgebra g ≥ 2 whether fqor surfa esUo′f(shoig)her genera , the non- {K1/2(K−1)−1}aik −→Aik, standard -algebras q n also play a role. (cid:22) Redefine: A −→I , K −→q. Below, the positive answer to this question is given. ik ik Σ×R Σ (cid:22) Identify: Forthetopologyofspa etime ( beinggenus- g π1(Σ) A(n) surfa e), the homotopy group is most effi- Then, the Nelson(cid:22)Regge algebra is seen to trans- 2g + 2 = n q iently des ribed in terms of generators late exa tly into the nonstandard -deformed algebra t1,t2,...,t2g+2 introdu ed in [20℄ and su h that Uq′(son) des ribed above, see (26). We on lude that 2g+2 thesetwodeformedalgebrasareisomorphi toea hoth- K 6= 1 n t1t3···t2g+1 =1, t2t4,...,t2g+2 =1, ti =1. er (of goursen, f=or2g+2 ). Re aKll t=ha(t4α−isilhin)/k(e4dαt+o tihhe) iY=1 genusα2 =as−1 , while with Λ. n(n−1)/2 Classi al gauge invariant tra e elements ( in Let us remark that it is the bilinear presentation (2) q U′(so ) total) defined as ofthe -algebra q n whi hmakespossibleestablish- 1 ing of this isomorphism. It should be stressed also that α = Tr(S(t t ···t )), S ∈SL(2,R), A(n) ij i i+1 j−1 2 (28) the algebra plays the role of (cid:16)intermediate(cid:17) one: starting with it and redu ing it appropriately, the al- generate on retealgebrawith Poissonbra kets,expli - gebra of quantum observables (gauge invariant global itly found in [20℄. At the quantum level, to the alge- hara teristi s) is to be finally onstru ted. The role of bra with generators A(2(8n)) there orresp2o+nd1s quantum Casimir operators in this pro ess, as seen in [20℄, is of ommutator algebra Λ spe ifi for quantum greatimportan e.Inthisrespe tletusmentionqthatthe g{rja,lv,ikty,mw}it,hj,nle,gka,tmive=1.,.F.o.r,ne,a h quadruple of indi es Uqu′a(sdora)ti anqd higher Casimir ele1ments of the -algebra su h that q n ,for beingnotarootof ,areknowninexpli it i<j <m<k <i , form[13,22℄ alongwitheigenvaluesoftheir orrespond- (29) ing (representation) operators [22℄. A(n) the algebra of quantum observables reads [20℄: As it was shown in detgai=l in1[19℄, the deformed alge- [a ,a ]=[a ,a ]=0, bra for the ase of genus surfa es redu es to the mk jl mj kl desired algebra of three independent quantum observ- [a ,a ]=(1− 1)(a −a a ), A(3) jk kl K jl kl jk ables whi h oin ides with , the latteUr′(bseoin)g iso- [ajk,akm]=(K1 −1)(ajm−ajkakm), (30) morphi gt=o2the Fairlie (cid:22) Odesskii algebra q 3 . The aseof issignifi antlymoreinvolved:hereonehas [a ,a ]=(K− 1)(a a −a a ). A(6) jk lm K jl km kl jm to derive, starting with the 15-generator algebra , the ne essary algebra of 6 (independent) quantum ob- K α Here the parameter of deformation involves both servables. J.Nelson and T.Regge have su eeded [23℄ in and Plan k's onstant, namely onstru tingsu hanalgebra.Their onstru tionhowev- K = 4α−ih, α2 =− 1 , Λ<0. er is highly nonunique and, what is moreessential, isn't 4α+ih 3Λ (31) seen to be effi iently extendable to general situation of g ≥3 . SL (2,R) ± Note that in (28) onlyone opy of the two is Our goal in this note was to attra t attention to the A(n) indi ated.In onjun tionwiththis,besidesthedeformed isomorphism of the deformed algebras from [20℄ A(n) SL (2,R) q U′(so ) algebra derivedwith, say, + takenin (28) andthenonstandard -deformedalgebras q n intro- A(n) and given by (30), another identi al opy of (with du ed in [6℄). The hope is that, taking into a ount a K → K−1 the only repla ement ) an also be obtained signifi ant amount of the already existing results on- SL (2,R) SL(2,R) U′(so ) starting from − taken in pla e of in erning diverseaspe tsof q n (the obtained various (28).Thisanother opyisindependentfromtheoriginal lasses of irredu ible representations [6, 14, 24(cid:22)28℄ and one: their generatorsmutually ommute. others, as well as knowledge of Casimir operators and ISSN 0503-1265. Óêð. iç. æóðí. 2002. Ò. 47, N 3 217 A.M.GAVRILIK theireigenvalues depending on representations,et .) we 22. Gavrilik A.M. and Iorgov N.Z., // Ibid. (cid:21) P. 310(cid:21)314, may expe t for a further progress on erning onstru - [math.QA/9911201℄. 6g−6 tionofthedesiredalgebraof independentquantum 23. Nelson J. and Regge T. // Phys. Rev. (cid:21) 1994. (cid:21) D50. (cid:21) P. g >2 observablesfor spa e surfa e of genus . 5125-5136. 24. GavrilikA.M.,IorgovN.Z.//MethodsofFun t.Anal.and The resear h des ribed in this publi ation was Topology(cid:21)1997.(cid:21)3,N4.(cid:21)P.51(cid:21)63,[q-alg/9709036℄. made possible in part by Award No. UP1-2115 of the 25. Samoilenko Yu. S., Turowska L. // Quantum Groups and U.S. Civilian Resear h and Development Foundation Quantum Spa es. (cid:21) Warsaw: Bana h Center Publi ations, (CRDF). 1997.(cid:21)P.21(cid:21)43. 26. Havl(cid:1)i(cid:7) ek M., Klimyk A. U., Po(cid:7)sta S. // Cze h. J. Phys. (cid:21) 2000. (cid:21) 50, N 1. (cid:21) P. 79(cid:21)84; World S ientifi . (cid:21) 2000. (cid:21) P. 1. Rovelli C., Smolin L. // Phys. Rev. (cid:21) 1995. (cid:21) D 52. (cid:21) P. 459(cid:21)464. 5743(cid:21)5759. 2. DrinfeldV.G.//Sov.Math.Dokl.(cid:21)1985.(cid:21)32.(cid:21)P.254(cid:21)258. 27. Gavrilik A. M., Iorgov N. Z. // Ukr. J. Phys. (cid:21) 1998. (cid:21) 43. N7.(cid:21)P.791(cid:21)797. 3. Jimbo M.//Lett.Math.Phys.(cid:21)1985.(cid:21)10.(cid:21)P.63(cid:21)69. 28. GavrilikA.M.,IorgovN.Z.//HeavyIonPhys.(A taPhys. 4. Chari V., Pressley A.AGuidetoQuantumGroups. (cid:21)Cam- Hungar.)(cid:21)2000.(cid:21)11,N1.(cid:21)P.29(cid:21)32. bridge:CambridgeUniv.Press,1994. 5. Klimyk A., S hmu(cid:4)dgen K.Quantum Groups and Their Rep- resentations. (cid:21)Berlin:Springer,1997. ÇÀÑÒÎÑÓÂÀÍÍßq-ÀË ÅÁUq′(son)ÄÎÊÂÀÍÒÎÂΈ q 6. Gavrilik A.M.,KlimykA. U.//Lett.Math.Phys.(cid:21)1991.(cid:21) ÀÂIÒÀÖIˆ:ÏÎ -ÄÅÔÎÌÎÂÀÍÈÉÀÍÀËÎ 21.(cid:21)P.215(cid:21)220, [math.QA/0203201℄. SO(n) -ÑÏIÍÎÂÈÕÑIÒÎÊ 7. FreidelA.,KrasnovK.//J.Math.Phys.(cid:21)2001.(cid:21)42,N11. (cid:21)P.5389(cid:21)5416. Î.Ì. àâðèëèê 8. VilenkinN.,KlimykA.//Representation ofLieGroupsand åçþìå Spe ial Fun tions. (cid:21) Kluwer a ademi publishers, Dordreht, 1993. Íåñòàíäàðòíi q-äåîðìîâàíi àëãåáðè Uq′(son), çàïðîïîíîâàíi 9. Gasper G., Rahman M. // Basi Hypergeometri Series. (cid:21) äåñÿòü ðîêiâ òîìó äëÿ ïîòðåá òåîði¨ ïðåäñòàâëåíü, iñòîòíî Cambridge:CambridgeUniv.Press,1990. âiäðiçíÿþòüñÿ âiUä(soñònà)íäàðòíî¨ äåîðìàöi¨ Äðiíåëüäà i Äæiìáî àëãåáð i ìàþòü ïåðåä îñòàííiìè âàæëèâi 10. Askey E., Wilson J.// MemoirsAmer.Math.So .(cid:21)1985.(cid:21) q 54,N3191. ïUåq′ð(såoânàã)èó. äÌâîèõDðâièçâí÷èàõ¹ìêîîíòìåDêîñæò≥àëõè.â3åÎäçèàíñòçîñíóèâõàíñíòÿîñó¹-òàüëñãÿåáqð- 11. Sugitani T.//Compos.Math.(cid:21)1995.(cid:21)99.(cid:21)P.249(cid:21)281. äåîðìóâàííÿ -âèìiðíî¨ ( ) åâêëiäîâî¨ ãðàâiòàöi¨ íà 12. Noumi M.//Adv.Math.(cid:21)1996.(cid:21)123,N1.(cid:21)P.16(cid:21)77. îñíîâi óçàãàëüíåííÿ îðìàëiçìó ñïiíîâèõ ñiòîê, iíøèé ä๠çàñòîñóâàííÿ äî (2+1)-âèìiðíî¨ àíòèäåñiòòåðiâñüêî¨ êâàíòîâî¨ 13. Noumi M., Umeda T., Wakayama M. // Compos. Math. (cid:21) g ãðàâiòàöi¨ (ç ðiìàíîâîþ ïîâåðõíåþ ðîäó ) óïiäõîäi Íåëüñîíà 1996.(cid:21)104.N2.(cid:21)P.227(cid:21)277. iåäæå. 14. Gavrilik A.M. and Klimyk A.U.// J.Math.Phys.(cid:21)1994. (cid:21) 13959.3(cid:21).(cid:21)P.9356.7(cid:21)0(cid:21)P3.628561;(cid:21)G25a7v.rilik A.M.//Teor. Matem.Fizika. (cid:21) ÏÈÌÅÍÅÍÈÅq-ÀqË ÅÁUq′(son)ÂÊÂÀÍÒÎÂÎÉ ÀÂÈÒÀÖÈÈ:Î -ÄÅÔÎÌÈÎÂÀÍÍÎÌ 15. OdesskiiA.//Fun t.Anal.Appl.(cid:21)1986.(cid:21)20.(cid:21)P.152(cid:21)154. SO(n) ÀÍÀËÎ Å -ÑÏÈÍÎÂÛÕÑÅÒÅÉ 16. Fairlie D. B. // J. Phys. A: Math. Gen. (cid:21) 1990. (cid:21) 23. (cid:21) P. L183(cid:21)L187. À.Ì. àâðèëèê 17. Deser S., Ja kiw R. and t'Hooft G.// Ann. Phys. (cid:21) 1984. (cid:21) åçþìå 152.(cid:21)P.220;DeserS.andJa kiw R.//Comm.Math.Phys. (cid:21)1988.(cid:21)118.(cid:21)P.495;t'HooftG.//Ibid.(cid:21)1988.(cid:21)117.(cid:21)P. Íåñòàíäàðòíûå q-äåîðìèðîâàííûå àëãåáðû Uq′(son), 685. ïðåäëîæåííûåäåñÿòüëåòòîìóíàçàäâñâÿçèñïîòðåáíîñòÿìè 18. WittenE.//Nu l.Phys.(cid:21)1988.(cid:21)B311.(cid:21)P.46;Ibid.(cid:21)1989. òåîðèè ïðåäñòàâëåíèé, ñóùåñòâåííî îòëè÷àþòñÿ îò (cid:21)B323.(cid:21)P.113. ñòàíäàðòíîé äåîðìàöèè Äðèíåëüäà è Äæèìáî àëãåáð U(son) 19. BNe3l3so9n,NJ.1,.R(cid:21)ePgg.e56T1.(cid:21),5Z78e.rtu he F. // Nu l. Phys. (cid:21) 1990. (cid:21) âîçìîæíîèå ïîðáèëìàäåíàþåíòèåðqÿ-äàîëìãåáðïðUåèq′(ìsóoqùn)åñâòâ.äâóÌõûðàçèëçèó÷÷íàûDåìõ 20. NelsonJ.,ReggeT.//Phys.Lett.(cid:21)1991.(cid:21)B272.(cid:21)P.213(cid:21) êîíòåêñòàDõ.≥Î3äèí èç íèõ êàñàåòñÿ -äåîðìèðîâàíèÿ - ìåðíîé ( ) ýâêëèäîâîé ãðàâèòàöèè íà îñíîâå îáîáùåíèÿ 218;Communs.Math.Phys.(cid:21)1993.(cid:21)155.(cid:21)P.561. îðìàëèçìà ñïèíîâûõ ñåòåé, äðóãîé (cid:22) ïðèìåíåíèÿ ê 21. Gavrilik A. M. // Pro . Inst. Math. of Nat. A ad. S i. of (2+1)-ìåðíîé àíòèäåñèòòåðîâñêîé êâàíòîâîé ãðàâèòàöèè (ñ g Ukraine.(cid:21)2000.(cid:21)30,N2.(cid:21)P.304(cid:21)309, [gr-q /9911094℄. ðèìàíîâîéïîâåðõíîñòüþðîäà )âïîäõîäåÍåëüñîíàèåäæå. 218 ISSN 0503-1265. Óêð. iç. æóðí. 2002. Ò. 47, N 3

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.