ebook img

Applied Number Theory PDF

452 Pages·2015·2.578 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Applied Number Theory

Harald Niederreiter Arne Winterhof Applied Number Theory Applied Number Theory Harald Niederreiter • Arne Winterhof Applied Number Theory 123 HaraldNiederreiter ArneWinterhof AustrianAcademyofSciences AustrianAcademyofSciences JohannRadonInst.forComputational JohannRadonInst.forComputational andAppliedMathematics(RICAM) andAppliedMathematics(RICAM) Linz,Austria Linz,Austria ISBN978-3-319-22320-9 ISBN978-3-319-22321-6 (eBook) DOI10.1007/978-3-319-22321-6 LibraryofCongressControlNumber:2015949818 MathematicsSubjectClassification(2010):11-XX,65-XX,94-XX SpringerChamHeidelbergNewYorkDordrechtLondon ©SpringerInternationalPublishingSwitzerland2015 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com) Preface Etlequatrièmemystère,nondesmoindres,estceluidela structuremathématiquedumonde:pourquoietquand apparaît-elle,commentpeut-onlamodéliser,etcommentle cerveauparvient-ilàl’élaborer,àpartirduchaosdanslequel nousvivons?1 E.Abécassis,Lepalimpsested’Archimède The Nobel laureate Eugene Wigner coined the phrase of the “unreasonableeffec- tivenessofmathematics”inexplainingthephysicalworld,whilethenovelistEliette Abécassis expressed this phenomenonin a more literary fashion, calling it one of thefourgreatmysteriesoftheworld.Indeed,whetherviewedfromthescientist’sor theartist’svantagepoint,thereisnodisputeabouttheapplicabilityofbroadpartsof mathematics.Ontheotherhand,numbertheory—thepurestofpuremathematics— haslongresistedthetemptationtobecomeapplicable,exceptfortrivialapplications such as Pythagorean triples for the construction of right angles and very simple cryptosystems. In 1940, the prominent number theorist G.H. Hardy confidently asserted in his book A Mathematician’sApology that he had never done anything useful and that no discovery of his was likely to make the least difference to the amenityoftheworld. Butthingschangeddramaticallyinthesecondhalfofthetwentiethcenturywhen, drivenbytheimpetusofscienceandtechnology,entirelynewareasofmathematics relyingheavilyonnumbertheorywerecreated.Today,numbertheoryisimplicitly presentineverydaylife:insupermarketbarcodereaders,inourcars’GPSsystems, intheerror-correctingcodesatworkinoursmartphones,andinonlinebanking,to mentionbutafewexamples. From our perspective, there are four major areas of application where number theoryplaysafundamentalrole,namelycryptography,codingtheory,quasi-Monte Carlo methods, and pseudorandom number generation. Excellent textbooks are availableforeachoftheseareas.Thisbookpresentsthefirstunifiedaccountofall theseapplications.Thisallowsustodelineatethemanifoldlinksandinterrelations betweenthese areas.Chapters2–5coverthe fourmain areasofapplication,while 1Authors’ translation: And the fourth mystery, and not the least, is that of the mathematical structureoftheworld:whyandwhendoesitarise,howcanonemodelit,andhowdoesthebrain managetoworkitout,startingfromthechaosinwhichwelive? v vi Preface the last chapter reviews variousadditionalapplicationsof number theory,ranging from check-digit systems to quantum computation and the organizationof raster- graphicsmemory.We hope that this panoramaof applications will inspire further research in applied number theory. In order to enhance the accessibility of the bookfor undergraduates,we haveincludeda briefintroductorycourseon number theory in Chap. 1. The last section of each of Chaps. 2–5 offers a glimpse of advancedresultsthatarestatedwithoutproofandrequireasomewhathigherlevel ofmathematicalmaturity. We have sought to minimize the prerequisites for the book. A background in number theory is not necessary, although it is certainly helpful. Elementary facts from calculus are used as a matter of course. Linear algebra appears only in a limited context, and the important special case of linear algebra over finite fields is developedfrom scratch. The chapters on coding theory and quasi-Monte Carlo methods are quite extensive, so that they could be used to teach separate courses on each of these topics. But we believe that a single course stressing the unity of appliednumbertheoryisinbetterconformitywiththephilosophyofthebook. Writing a book is not possible without the help of many. We are particularly indebted to Professor Friedrich Pillichshammer of the University of Linz for his assistance with the figures, to Professors Sheldon Axler and Ken Ribet for their comments on a preliminary version of the book, to our institutions for providing excellent research facilities, and to Edward Lear for developing limericks into a veritableartform.The limericksat the beginningof eachchapterare notcredited since they were written by the first author (our apologies if you find them silly). We also wish to extend our special gratitude to Ruth Allewelt and Martin Peters atSpringer-Verlagfortheirunfailingsupportofourprojectandtoourfamiliesfor theirpatienceandindulgence. Linz,Austria HaraldNiederreiter March2015 ArneWinterhof Contents 1 AReviewofNumberTheoryandAlgebra................................ 1 1.1 IntegerArithmetic....................................................... 1 1.2 Congruences............................................................. 5 1.3 GroupsandCharacters.................................................. 12 1.3.1 AbelianGroups................................................. 12 1.3.2 Characters....................................................... 19 1.4 FiniteFields............................................................. 23 1.4.1 FundamentalProperties ........................................ 23 1.4.2 Polynomials..................................................... 27 1.4.3 ConstructionsofFiniteFields.................................. 33 1.4.4 TraceMapandCharacters...................................... 40 Exercises....................................................................... 43 2 Cryptography ................................................................ 47 2.1 ClassicalCryptosystems................................................ 47 2.1.1 BasicPrinciples................................................. 47 2.1.2 SubstitutionCiphers............................................ 50 2.2 SymmetricBlockCiphers .............................................. 52 2.2.1 DataEncryptionStandard(DES) .............................. 52 2.2.2 AdvancedEncryptionStandard(AES) ........................ 54 2.3 Public-KeyCryptosystems ............................................. 56 2.3.1 BackgroundandBasics......................................... 56 2.3.2 TheRSACryptosystem ........................................ 59 2.3.3 FactorizationMethods.......................................... 62 2.4 CryptosystemsBasedonDiscreteLogarithms ........................ 67 2.4.1 TheCryptosystems ............................................. 67 2.4.2 ComputingDiscreteLogarithms............................... 69 2.5 DigitalSignatures....................................................... 73 2.5.1 DigitalSignaturesfromPublic-KeyCryptosystems .......... 73 2.5.2 DSSandRelatedSchemes ..................................... 75 2.6 ThresholdSchemes ..................................................... 77 vii viii Contents 2.7 PrimalityTests .......................................................... 80 2.7.1 FermatTestandCarmichaelNumbers......................... 80 2.7.2 Solovay-StrassenTest .......................................... 83 2.7.3 PrimalityTestsforSpecialNumbers........................... 86 2.8 AGlimpseofAdvancedTopics........................................ 89 Exercises....................................................................... 94 3 CodingTheory ............................................................... 99 3.1 IntroductiontoError-CorrectingCodes................................ 99 3.1.1 BasicDefinitions................................................ 99 3.1.2 ErrorCorrection ................................................ 102 3.2 LinearCodes ............................................................ 106 3.2.1 VectorSpacesOverFiniteFields .............................. 106 3.2.2 FundamentalPropertiesofLinearCodes...................... 109 3.2.3 MatricesOverFiniteFields .................................... 112 3.2.4 GeneratorMatrix................................................ 114 3.2.5 TheDualCode.................................................. 117 3.2.6 Parity-CheckMatrix............................................ 118 3.2.7 TheSyndromeDecodingAlgorithm........................... 121 3.2.8 TheMacWilliamsIdentity...................................... 124 3.2.9 Self-OrthogonalandSelf-DualCodes......................... 127 3.3 CyclicCodes ............................................................ 128 3.3.1 CyclicCodesandIdeals........................................ 128 3.3.2 TheGeneratorPolynomial ..................................... 133 3.3.3 GeneratorMatrix................................................ 135 3.3.4 DualCodeandParity-CheckMatrix........................... 138 3.3.5 CyclicCodesfromRoots....................................... 140 3.3.6 IrreducibleCyclicCodes....................................... 143 3.3.7 DecodingAlgorithmsforCyclicCodes ....................... 146 3.4 BoundsinCodingTheory .............................................. 151 3.4.1 ExistenceTheoremsforGoodCodes.......................... 151 3.4.2 LimitationsontheParametersofCodes....................... 153 3.5 SomeSpecialLinearCodes ............................................ 157 3.5.1 HammingCodes................................................ 157 3.5.2 GolayCodes .................................................... 165 3.5.3 Reed-SolomonCodesandBCHCodes........................ 168 3.6 AGlimpseofAdvancedTopics........................................ 173 Exercises....................................................................... 180 4 Quasi-MonteCarloMethods ............................................... 185 4.1 NumericalIntegrationandUniformDistribution...................... 185 4.1.1 TheOne-DimensionalCase.................................... 185 4.1.2 TheMultidimensionalCase.................................... 204 4.2 ClassicalLow-DiscrepancySequences ................................ 216 4.2.1 KroneckerSequencesandContinuedFractions............... 216 4.2.2 HaltonSequences............................................... 223 Contents ix 4.3 LatticeRules ............................................................ 227 4.3.1 GoodLatticePoints............................................. 227 4.3.2 GeneralLatticeRules........................................... 244 4.4 Netsand.t;s/-Sequences............................................... 251 4.4.1 BasicFactsAboutNets......................................... 251 4.4.2 DigitalNetsandDualityTheory............................... 258 4.4.3 ConstructionsofDigitalNets .................................. 268 4.4.4 .t;s/-Sequences................................................. 287 4.4.5 AConstructionof.t;s/-Sequences ............................ 294 4.5 AGlimpseofAdvancedTopics........................................ 299 Exercises....................................................................... 303 5 PseudorandomNumbers.................................................... 307 5.1 GeneralPrinciples....................................................... 307 5.1.1 RandomNumberGeneration................................... 307 5.1.2 TestingPseudorandomNumbers............................... 312 5.2 TheLinearCongruentialMethod ...................................... 316 5.2.1 BasicProperties................................................. 316 5.2.2 ConnectionswithGoodLatticePoints ........................ 324 5.3 NonlinearMethods...................................................... 330 5.3.1 TheGeneralNonlinearMethod................................ 330 5.3.2 InversiveMethods .............................................. 340 5.4 PseudorandomBits ..................................................... 350 5.5 AGlimpseofAdvancedTopics........................................ 359 Exercises....................................................................... 362 6 FurtherApplications ........................................................ 367 6.1 Check-DigitSystems ................................................... 367 6.1.1 DefinitionandExamples ....................................... 367 6.1.2 NeighborTranspositionsandOrthomorphisms............... 369 6.1.3 PermutationsforDetectingOtherFrequentErrors............ 372 6.2 CoveringSetsandPackingSets........................................ 377 6.2.1 CoveringSetsandRewritingSchemes ........................ 377 6.2.2 PackingSetsandLimited-MagnitudeErrorCorrection ...... 379 6.3 Waring’sProblemforFiniteFields..................................... 381 6.3.1 Waring’sProblem............................................... 381 6.3.2 AdditionTheorems............................................. 383 6.3.3 Sum-ProductTheorems ........................................ 387 6.3.4 CoveringCodes................................................. 391 6.4 HadamardMatricesandApplications.................................. 394 6.4.1 BasicConstructions............................................. 394 6.4.2 HadamardCodes................................................ 398 6.4.3 SignalCorrelation .............................................. 400 6.4.4 HadamardTransformandBentFunctions..................... 402

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.