ebook img

Applied linear models with SAS PDF

289 Pages·2010·4.609 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Applied linear models with SAS

This page intentionally left blank Applied Linear Models with SAS This textbook for a second course in basic statistics for undergraduates or first-year graduate studentsintroduceslinearregressionmodelsanddescribesotherlinearmodelsincludingPoisson regression, logistic regression, proportional hazards regression, and nonparametric regression. Numerousexamplesdrawnfromthenewsandcurrenteventswithanemphasisonhealthissues illustratetheseconcepts. Assuming only a pre-calculus background, the author keeps equations to a minimum and demonstratesallcomputationsusingSAS.Mostoftheprogramsandoutputaredisplayedina self-containedway,withanemphasisontheinterpretationoftheoutputintermsofhowitrelates tothemotivatingexample.Plentyofexercisesconcludeeverychapter.AllofthedatasetsandSAS programsareavailablefromthebook’sWebsite,alongwithotherancillarymaterial. Dr. Daniel ZeltermanisProfessorofEpidemiologyandPublicHealthintheDivisionofBio- statisticsatYaleUniversity.Hisapplicationareasincludeworkingenetics,HIV,andcancer.Before movingto Yale in 1995,hewason thefaculty ofthe UniversityofMinnesotaandattheState UniversityofNewYorkatAlbany.HeisanelectedFellowoftheAmericanStatisticalAssociation. HeservesasassociateeditorofBiometricsandotherstatisticaljournals.HeistheauthorofModels forDiscreteData (1999),Advanced Log-Linear Models UsingSAS (2002),Discrete Distributions: ApplicationintheHealthSciences(2004),andModelsforDiscreteData:2ndEdition(2006).Inhis sparetimeheplaysthebassooninorchestralgroupsandhasbackpackedhundredsofmilesofthe AppalachianTrail. Applied Linear Models with SAS Daniel Zelterman YaleUniversity CAMBRIDGEUNIVERSITYPRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521761598 © Daniel Zelterman 2010 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2010 ISBN-13 978-0-511-77476-8 eBook (EBL) ISBN-13 978-0-521-76159-8 Hardback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents Preface pageix Acknowledgments xiii 1 Introduction 1 1.1 WhatIsStatistics? 1 1.2 StatisticsintheNews:TheWeatherMap 4 1.3 MathematicalBackground 6 1.4 Calculus 7 1.5 CalculusintheNews:NewHomeSales 9 1.6 StatisticsintheNews:IMFLoansandTuberculosis 11 1.7 Exercises 13 2 PrinciplesofStatistics 21 2.1 BinomialDistribution 21 2.2 ConfidenceIntervalsandtheHubbleConstant 25 2.3 NormalDistribution 26 2.4 HypothesisTests 30 2.5 TheStudentt-Test 34 2.6 TheChi-SquaredTestand2×2Tables 42 2.7 WhatAreDegreesofFreedom? 47 2.8 SAS,inaNutshell 49 2.9 SurveyoftheRestoftheBook 51 2.10 Exercises 52 3 IntroductiontoLinearRegression 58 3.1 Low-Birth-WeightInfants 58 3.2 TheLeastSquaresRegressionLine 59 3.3 RegressioninSAS 63 3.4 StatisticsintheNews:FutureHealthCareCosts 65 3.5 Exercises 66 v vi Contents 4 AssessingtheRegression 75 4.1 Correlation 75 4.2 StatisticsintheNews:CorrelationsoftheGlobalEconomy 77 4.3 AnalysisofVariance 78 4.4 ModelAssumptionsandResidualPlots 81 4.5 Exercises 84 5 MultipleLinearRegression 90 5.1 IntroductoryExample:MaximumJanuaryTemperatures 90 5.2 GraphicalDisplaysofMultivariateData 94 5.3 LeverageandtheHatMatrixDiagonal 96 5.4 JackknifeDiagnostics 99 5.5 PartialRegressionPlotsandCorrelations 102 5.6 Model-BuildingStrategies 105 5.7 Exercises 110 6 Indicators,Interactions,andTransformations 120 6.1 IndicatorVariables 120 6.2 SynergyintheNews:AirlineMergers 127 6.3 InteractionsofExplanatoryVariables 128 6.4 Transformations 132 6.5 AdditionalTopics:LongitudinalData 137 6.6 Exercises 138 7 NonparametricStatistics 150 7.1 ATestforMedians 150 7.2 StatisticsintheNews:MathAchievementScores 153 7.3 RankSumTest 155 7.4 NonparametricMethodsinSAS 156 7.5 RankingandtheHealthiestState 157 7.6 NonparametricRegression:LOESS 160 7.7 Exercises 163 8 LogisticRegression 169 8.1 Example 169 8.2 TheLogitTransformation 170 8.3 LogisticRegressioninSAS 173 8.4 StatisticsintheNews:TheNewYorkMets 177 8.5 KeyPoints 178 8.6 Exercises 179 9 DiagnosticsforLogisticRegression 187 9.1 SomeSyntaxforproc logistic 188 9.2 ResidualsforLogisticRegression 190 vii Contents 9.3 InfluenceinLogisticRegression 193 9.4 Exercises 197 10 PoissonRegression 204 10.1 StatisticsintheNews:LotteryWinners 204 10.2 PoissonDistributionBasics 204 10.3 RegressionModelsforPoissonData 206 10.4 StatisticsintheNews:AttacksinIraq 208 10.5 PoissonRegressioninSAS 209 10.6 Exercises 215 11 SurvivalAnalysis 225 11.1 Censoring 225 11.2 TheSurvivalCurveandItsEstimate 227 11.3 TheLog-RankTestandSASProgram 232 11.4 Exercises 235 12 ProportionalHazardsRegression 237 12.1 TheHazardFunction 237 12.2 TheModelofProportionalHazardsRegression 239 12.3 ProportionalHazardsRegressioninSAS 241 12.4 Exercises 243 13 ReviewofMethods 247 13.1 TheAppropriateMethod 247 13.2 OtherReviewQuestions 249 Appendix:StatisticalTables 255 A.1 NormalDistribution 255 A.2 Chi-squaredTables 257 References 259 SelectedSolutionsandHints 263 Index 269

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.