ebook img

Applied Geophysics (Geology 319 / 829) PDF

288 Pages·2012·36.21 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Applied Geophysics (Geology 319 / 829)

Applied Geophysics (Geology 319 / 829) Gerhard Pratt Department of Geological Sciences and Geological Engineering, Queen’s University 4th August 2005 Contents 1. Introduction 3 1.1. Instructors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2. Course description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3. The objectives of the course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4. Other geophysics courses at Queen’s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.5. Course Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.6. Assessment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.7. Textbook(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.8. A brief survey of applied geophysics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2. Gravity Methods 15 2.1. Basic gravitationaltheory, Newton’s Law, Potentials . . . . . . . . . . . . . . . . . . . . . . . 15 2.2. Geoid, spheriod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.3. Units used in gravity prospecting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.4. Instruments in gravityprospecting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.5. Field operations for gravitysurveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.6. Gravity data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.7. Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.8. Gravity interpretation and gravitymodelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 2.9. Gravity prospecting case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3. Magnetic (cid:12)eld methods 53 3.1. Basic magnetic (cid:12)eld theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.2. Magnetic dipoles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.3. Magnetization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 3.4. Induced magnetization and magnetic susceptibility . . . . . . . . . . . . . . . . . . . . . . . . 65 3.5. Instrumentation for magnetic prospecting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 3.6. Predicting magnetic (cid:12)eld variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.7. Poisson relationship . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.8. Magnetic and gravity(cid:12)eld transformations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.9. Rock magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.10.Magnetic case studies in explorationand engineering . . . . . . . . . . . . . . . . . . . . . . . 87 4. Electrical Methods 105 4.1. Basic theory: resistance and resistivity of rocks . . . . . . . . . . . . . . . . . . . . . . . . . . 106 4.2. Electrode arrangements,apparent resistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.3. Types of resistivity surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 4.4. Induced polarization (IP method): basic theory . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.5. Mechanisms causing the IP e(cid:11)ect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 4.6. Data acquisition and (cid:12)eld procedures for IP surveys . . . . . . . . . . . . . . . . . . . . . . . 126 4.7. Case studies in exploration and engineering: resistivity and IP . . . . . . . . . . . . . . . . . 128 1 Contents 5. Electromagnetic Methods (EM) 145 5.1. EM theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 5.2. EM induction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 5.3. Response of a frequency-domain system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 5.4. Frequency domain EM, horizontal loop systems . . . . . . . . . . . . . . . . . . . . . . . . . . 156 5.5. Time domain EM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 5.6. EM systems: Final comments and examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 6. Seismic Methods 181 6.1. Scales of seismology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 6.2. The seismic exploration business . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 6.3. Seismic sources and receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 6.4. Theory of seismic wave propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 6.5. Seismic rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 6.6. Seismic refractionsand head waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 6.7. Seismic re(cid:13)ections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205 6.8. Anatomy of a shot gather . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207 6.9. Re(cid:13)ection times in multi-layered media. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211 6.10.Re(cid:13)ection seismics, basic processing methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 213 6.11.Re(cid:13)ection velocity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225 6.12.Stacked sections are zero-o(cid:11)set sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236 6.13.Introduction to seismic\migration" . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239 6.14.Seismic resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249 6.15.Seismic re(cid:13)ection case studies in exploration and engineering . . . . . . . . . . . . . . . . . . 255 A. Mathematical Formulas 281 A.1. Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281 A.2. Magnetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282 A.3. Electrical methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283 A.4. Electromagnetic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 A.5. Seismic methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285 Copyright 2005 R. Gerhard Pratt 2 1. Introduction 1.1. Instructors Professor: Gerhard Pratt, Department of Geological Sciences and Geological Engineering. O(cid:14)ce: Miller Hall Room 321, 533 6501, email: [email protected] Teaching Assistants: Sary Zantout, email: [email protected] Jenn Stanners, email: [email protected] 1.2. Course description The course description for GEOL 319 in the Applied Science Calender is: Techniques of geophysics (including gravity, magnetic, electrical, and seismic) applied to en- gineering problems, including resource exploration and site investigation. Physical principles, instrumentation, (cid:12)eld procedures, data interpretation, and design of (cid:12)eld programs are covered for each of the major methods. Pre-requisites (Applied Science): GEOL 249 (Geophysical characterization), MATH 226 (Ordi- nary di(cid:11)erential equations), MATH 227 (Vector analysis), or permission of the instructor. In the Arts and Science Calender the course description is the same, but the pre-requisitesare: GEOL111(PrinciplesofGeology-orequivalent),MATH121(Di(cid:11)erentialandintegralcalculus), MATH 221 (Vector calculus), and GEOL 249 (Geophysical characterization), or permission of the instructor. A knowledge of di(cid:11)erential equations (MATH 232) would be an asset. These course notes are also used for the graduate course, GEOL 829 (primarily for students in the Mineral Exploration graduate program). GEOL 829 is presented separately, and a short, three day (cid:12)eld component is included.The description in the Graduate Calendar for GEOL 829 is A graduate level, introductory course in applied geophysics (including gravity, magnetic, elec- trical and seismic methods) for resource exploration and site investigation. Physical principles, instrumentation, (cid:12)eld procedures, data interpretation, design of (cid:12)eld programs and case studies are covered for each of the major methods. 1.3. The objectives of the course Thiscourseaimstotrainyouforyourfuturecareersasgeoscientistsand geologicalengineers. Wethink you need to be informed enough to make use of those geophysical techniques appropriate for your applications (engineering, earth science, mineral exploration or other). This does not mean we want you to become geophysicists(althoughsomeofyouwill). However,inwhatevergeoscience(cid:12)eldyouendupin,wewantyou tobeabletospeakknowledgeablytobothyourcontractorsandyourmanagers,tobeabletounderstandthe geophysicalsurveys you commission (and understand how to know if there are problems) and to ultimately beinnovative ifthereisanewproblemthatmightlenditselftogeophysicalmethods. Insomecases,thismay be the last applied geophysics course you take | if so, use this opportunity to consolidateyour geophysical knowledge,yourcareerwillbeenrichedasaresult. Inothercasesyoumayproceedtomoreadvancedcourses in which you will learn about geophysics at deeper level | this course gives you the basis on which to do this. 3 CHAPTER 1. INTRODUCTION 1.3.1. A comment on mathematics Idon’tthinkthatAppliedgeophysicscanbee(cid:11)ectivelylearnedwithoutsomemathematics. Withoutmathe- maticsthesubjectbecomessuper(cid:12)cialandunsatisfyingandrarelygoesbeyondthelevelof\lookforredareas on the images". None of the objectives listed above are possible without using a mathematical language to describethe physicsof the measurements. Themathematicsthatarerequiredareatthesecondyearuniver- sitylevel(calculus,ordinarydi(cid:11)erentialequations,vectoranalysisandvectorcalculus). Anappendix tothis course covers some of the critical topics (scalars, vectors and the di(cid:11)erential operators gradient, divergence and curl). Early tutorials in the course will be used to go over this material for the bene(cid:12)t of any student who is unsure of these topics. If you are very unsure about mathematics, there is a good review textbook that will help you to get the required background. It is Mathematics: A simple tool for geologists, by David Waltham (Chapman and Hall, 2000). 1.4. Other geophysics courses at Queen’s Geology 249: Geophysicalcharacterizationof the Earth. Anintroductorycourseingeophysicscoveringthe geophysicalcharacterizationof the earth at all scales. The physical properties and dynamic processes are assessed and an introduction to applied geophysicalmethods is provided. Winter term. Geology 349: Applications of quantitative analysisin geologicalengineering. Geophysicsis only one aspect of this course, which teaches mathematical and programming methods in the solution of practical problems in geologicalengineering. Winter term. Geology 409: Applied geophysics laboratory: This is the continuation of Geology 319, providing hands-on experiencewith avarietyof geophysical(cid:12)eldmethods. Aoneweek(cid:12)eldsurveyisdesignedandcarried out by the students. This course is core for geophysical engineers, and is a technical elective for all other students in geologicalengineering. Fall term, alternate years. Geology 429: Geophysical signal analysis. Covers the major processing tools used to analyze geophysical data (gravity, magnetic and seismic). Theory and practice, including discrete linear and non-linear problems, inverse methods, uniqueness and accuracy. Winter term, alternate years. Geology 479: Potential(cid:12)eldandelectromagneticmethods. Anadvancedcoursedealingwiththeapplication of gravity, magnetic, electromagnetic, resistivity, and induced polarization methods. Winter term, alternate years. Geology 489: Seismic methods: An advanced course dealingwith the analysis, modelling and processingof controlled source seismic data. Winter term, alternate years. 1.5. Course Structure The course is divided into three consecutive blocks, covering 1. Gravityand magnetic (cid:12)eld methods (chapters 2 and 3), 2. Electricaland electromagneticmethods (chapters 4 and 5), and 3. Seismic methods (chapter 6). Each topic will follow a similar plan, covering the basic physical principles of the measurement, the instru- mentation and (cid:12)eld methods used, the methods used for data reduction, the interpretation of the results, and a seriesof case studies illustratingapplications. The table of contents(above) is a guide to the detailed lecture plan for the course. Copyright 2005 R. Gerhard Pratt 4 1.6. ASSESSMENT 1.6. Assessment Performancein this coursewill be assessedon the basis of approximately6 problemssets, a mid-term exam and a (cid:12)nal exam. Problem sets will be assigned every two weeks, usually due within a week of distribution. Wewillattempttomarkandreturnthesewithinaweek. Theseproblemsetswillre-enforcelecturematerial and prepare you for the questions that will be set on the (cid:12)nal exam. I suggest the following breakdown for assessment in this course: GEOL 319 GEOL 829 Assignments 25% 20% Mid-term exam 15% 15% Final exam 55% 35% Field project - 25% Class participation, quizzes, etc (occasional) 5% 5% 1.7. Textbook(s) I recommend you buy one of these books: Telford, W.M., Geldart, L.P, and Sheri(cid:11), R.E. Applied Geophysics, Second Edition. Cambridge University Press, 1990. (Suitable for students specializing in Geophysics. In the past this was consideredaverycompletereferencetextbook,butitisbecomingsomewhatdated. Insectionsit tends to be overly mathematical, but it does have many examples of geophysical data in a wide range of applications. For descriptions of the engineering principles of geophysical sensors it is unrivaled). Kearey and Brooks, Introduction to Geophysical Exploration, Blackwells. (Suitable for students specializinginMineralExploration. Alessadvancedbook,butcontainswellwrittenintroductory material to most methods). P.V. Sharma, Environmental and Engineering Geophysics. Cambridge University Press. (Suit- able for students specializing in Geo-environmental or Geotechnical Engineering. A new, very well written book, at the intermediate level. Examples are speci(cid:12)c to environmental and engi- neering geophysics. This book is so well written that I would encourage all interested students to own a copy). In addition, there are a number of other good books that you will (cid:12)nd useful from time-to-time: Grant, F.S. and West, G.F., 1965. Interpretation theory in applied geophysics. McGraw-Hill (out of print). Parasnis, Principles of applied geophysics, Chapman and Hall. Nettleton. Gravity and magnetics in Oil Prospecting. McGraw-Hill (out of print). Garland, G.D., 1979. Introduction to Geophysics: Mantle, Core and Crust. Saunders (out of print). Blakely, R. J., 1995. Potential Theory in Gravity and Magnetic Applications. Cambridge Uni- versity Press. Blaricom, R., 1992. Practical Geophysics II for the Exploration Geologist. Northwest Mining Association. Reynolds, J.M., Introduction to Applied and Environmental Geophysics, John Wiley and Sons. Hatton, L., Worthington, M.H. and Makin, J., 1986. Seismic data processing: theory and prac- tice. Blackwell Scienti(cid:12)c Publications. Sheri(cid:11), R.E. and Geldart, L.P., 1995. Exploration seismology, second edition. Cambridge Uni- versity Press. Yilmaz, Ozdogan, 1987. Seismic data processing. Society of Exploration Geophysicists. (The titles above are in the library and on reserve) 5 Copyright 2005 R. Gerhard Pratt CHAPTER 1. INTRODUCTION 1.8. A brief survey of applied geophysics Table 1.1 (below) is a summary of the major methods of applied geophysics, and their uses. The table is dividedintothe threemainareasofstudythatthiscoursewillcover(potential(cid:12)elds,electricalmethodsand seismic methods). The major applications are listed, howeverthis is not a comprehensive list; geophysicists and engineers are often involved in the selection of appropriate geophysicalmethods for novel problems. Copyright 2005 R. Gerhard Pratt 6 Method Measured parameter Physical property Major applications Potentials Gravity Spatial variations in the local Local variationsin density Mapping of regional structures, sedimentary basins, salt diapers, plu- strength of the gravitational tonicintrusionsdelineation,sandandgraveldeposits,depthtobedrock (cid:12)eld of the Earth Magnetic Spatial variations in the local Local variations in suscepti- Mapping of regional structures, airborne surveys, igneous intrusions, strength of the geomagnetic bility and remanence sea (cid:13)oor spreading, salt structures, mineral deposits, buried environ- (cid:12)eld mental hazards, archeology Electrical Resistivity Earthresistance(appliedvolt- Electrical resistivity (conduc- Mineralprospecting,engineeringandhydrogeology,contaminantmap- age / measured current) tivity) ping, construction site investigation,groundwater Induced polar- Voltage decay, or frequency Electrical capacitance Detectionofdisseminatedmineraldeposits,aquifermapping,contam- T a ization (IP) dependent resistance inant mapping b le Self-potential Natural electric potential Electro-chemicalactivity Mineral prospecting, graphite detection, hydrogeology (seepage), 1 (SP) geothermal studies .1 .: Electromagnetic Secondary (induced) electro- Electricalconductivityandin- Deep mineral prospecting, airborne surveys, conducting faults, G (EM) magnetic (cid:12)elds ductance groundwaterstudies, detectionof undergroundpipesand cables,agri- e o p cultural studies h y Radar Traveltimes, amplitudes, Electrical conductivity, radar Shallow sedimentary structures, water table detection, bedrock map- 1 sic7 waveforms of re(cid:13)ected elec- image ping, mapping of hydrocarboncontaminants .8. a l tromagnetic pulse A s u B rv Seismic R e I y Earthquake, mi- Location of earthquake, trav- Compressional,shearvelocity, Earth mapping at all scales from global to mine excavation E m F croseismic eltime of elastic waves fracture location e S th Refraction Traveltimes, amplitudes, Compressional,shearwaveve- Crustal scale to engineering scale mapping of rock types, structural U o R d waveforms of refracted elastic locities boundaries, foundations, hydrogeology V s E C waves Y o py Re(cid:13)ection Traveltimes, amplitudes, Compressional, shear wave Oilandgasexploration,sitesurveying,bedrockmapping,detectionof O r F igh waveforms of re(cid:13)ected elastic contrasts, density contrasts, shallow faults and cavities. A t waves seismic image P 2 P 0 L 05 IE R D . G G E e r O ha P r H d Y P S r I a C tt S CHAPTER 1. INTRODUCTION Figure1.1andFigure1.2showtwoexamplesoflargescalemapsofthegravityandmagnetic(cid:12)eldanomalies overCentralBritain. Whilethegravitymaplargelyrespondstoareasofuplift,themagnetic(cid:12)eldmapshows some of the tectonic fabric recorded in the distribution of magnetite-rich rocks near major fault zones. Figure 1.1.: Colour shaded-relief image of the gravity (cid:12)eld of Central Britain illuminated from the north. Blue representslow values, red high values (from Keareyand Brooks) Copyright 2005 R. Gerhard Pratt 8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.