ebook img

Applied Complex Variables for Scientists and Engineers PDF

452 Pages·2010·3.856 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Applied Complex Variables for Scientists and Engineers

This page intentionally left blank AppliedComplexVariablesforScientistsandEngineers SecondEdition YueKuenKwok Applied Complex Variables for Scientists and Engineers Second Edition YueKuenKwok HongKongUniversityofScienceandTechnology CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521701389 © Y. K. Kwok 2010 This publication is in copyright. Subject to statutory exception and to the provision of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press. First published in print format 2010 ISBN-13 978-0-511-77500-0 eBook (EBL) ISBN-13 978-0-521-70138-9 Paperback Cambridge University Press has no responsibility for the persistence or accuracy of urls for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate. Contents Preface pageix 1 ComplexNumbers 1 1.1 Complexnumbersandtheirrepresentations 1 1.2 Algebraicpropertiesofcomplexnumbers 4 1.2.1 DeMoivre’stheorem 7 1.3 Geometricpropertiesofcomplexnumbers 13 1.3.1 nthrootsofunity 16 1.3.2 Symmetrywithrespecttoacircle 17 1.4 Sometopologicaldefinitions 23 1.5 ComplexinfinityandtheRiemannsphere 29 1.5.1 TheRiemannsphereandstereographicprojection 30 1.6 Applicationstoelectricalcircuits 33 1.7 Problems 36 2 AnalyticFunctions 46 2.1 Functionsofacomplexvariable 46 2.1.1 Velocityoffluidflowemanatingfromasource 48 2.1.2 Mappingpropertiesofcomplexfunctions 50 2.1.3 Definitionsoftheexponentialandtrigonometric functions 53 2.2 Limitandcontinuityofcomplexfunctions 54 2.2.1 Limitofacomplexfunction 54 2.2.2 Continuityofacomplexfunction 58 2.3 Differentiationofcomplexfunctions 61 2.3.1 Complexvelocityandacceleration 63 2.4 Cauchy–Riemannrelations 64 2.4.1 Conjugatecomplexvariables 69 v vi Contents 2.5 Analyticity 70 2.6 Harmonicfunctions 74 2.6.1 Harmonicconjugate 75 2.6.2 Steadystatetemperaturedistribution 80 2.6.3 Poisson’sequation 84 2.7 Problems 85 3 Exponential,LogarithmicandTrigonometricFunctions 93 3.1 Exponentialfunctions 93 3.1.1 Definitionfromthefirstprinciples 94 3.1.2 Mappingpropertiesofthecomplexexponential function 97 3.2 Trigonometricandhyperbolicfunctions 97 3.2.1 Mappingpropertiesofthecomplexsinefunction 102 3.3 Logarithmicfunctions 104 3.3.1 Heatsource 106 3.3.2 Temperaturedistributionintheupperhalf-plane 108 3.4 Inversetrigonometricandhyperbolicfunctions 111 3.5 Generalizedexponential,logarithmic,andpower functions 115 3.6 Branchpoints,branchcutsandRiemannsurfaces 118 3.6.1 Joukowskimapping 123 3.7 Problems 126 4 ComplexIntegration 133 4.1 Formulationsofcomplexintegration 133 4.1.1 Definiteintegralofacomplex-valuedfunctionofa realvariable 134 4.1.2 Complexintegralsaslineintegrals 135 4.2 Cauchyintegraltheorem 142 4.3 Cauchyintegralformulaanditsconsequences 151 4.3.1 Derivativesofcontourintegrals 153 4.3.2 Morera’stheorem 157 4.3.3 ConsequencesoftheCauchyintegralformula 158 4.4 Potentialfunctionsofconservativefields 162 4.4.1 Velocitypotentialandstreamfunctionoffluid flows 162 4.4.2 Electrostaticfields 175 4.4.3 Gravitationalfields 179 4.5 Problems 183 Contents vii 5 TaylorandLaurentSeries 194 5.1 Complexsequencesandseries 194 5.1.1 Convergenceofcomplexsequences 194 5.1.2 Infiniteseriesofcomplexnumbers 196 5.1.3 Convergencetestsofcomplexseries 197 5.2 Sequencesandseriesofcomplexfunctions 200 5.2.1 Convergenceofseriesofcomplexfunctions 201 5.2.2 Powerseries 206 5.3 Taylorseries 215 5.4 Laurentseries 221 5.4.1 Potentialflowpastanobstacle 230 5.5 Analyticcontinuation 233 5.5.1 Reflectionprinciple 236 5.6 Problems 238 6 SingularitiesandCalculusofResidues 248 6.1 Classificationofsingularpoints 248 6.2 ResiduesandtheResidueTheorem 255 6.2.1 Computationalformulasforevaluatingresidues 257 6.3 Evaluationofrealintegralsbyresiduecalculus 268 6.3.1 Integralsoftrigonometricfunctionsover[0,2π] 268 6.3.2 Integralsofrationalfunctions 269 6.3.3 Integralsinvolvingmulti-valuedfunctions 271 6.3.4 Miscellaneoustypesofintegral 275 6.4 Fouriertransforms 278 6.4.1 Fourierinversionformula 279 6.4.2 EvaluationofFourierintegrals 285 6.5 Cauchyprincipalvalueofanimproperintegral 288 6.6 Hydrodynamicsinpotentialfluidflows 295 6.6.1 Blasiuslawsofhydrodynamicforceandmoment 295 6.6.2 Kutta–Joukowski’sliftingforcetheorem 299 6.7 Problems 300 7 BoundaryValueProblemsandInitial-Boundary ValueProblems 311 7.1 Integralformulasofharmonicfunctions 312 7.1.1 Poissonintegralformula 312 7.1.2 Schwarzintegralformula 319 7.1.3 Neumannproblems 324 7.2 TheLaplacetransformanditsinversion 326 7.2.1 Bromwichintegrals 330 viii Contents 7.3 Initial-boundaryvalueproblems 336 7.3.1 Heatconduction 337 7.3.2 Longitudinaloscillationsofanelasticthinrod 341 7.4 Problems 346 8 ConformalMappingsandApplications 358 8.1 Conformalmappings 358 8.1.1 InvarianceoftheLaplaceequation 364 8.1.2 Hodographtransformations 372 8.2 Bilineartransformations 375 8.2.1 Circle-preservingproperty 378 8.2.2 Symmetry-preservingproperty 381 8.2.3 Somespecialbilineartransformations 390 8.3 Schwarz–Christoffeltransformations 399 8.4 Problems 409 AnswerstoProblems 419 Index 434

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.