Description:Intro; Table of Contents; About the Author; About the Contributor; About the Technical Reviewer; Acknowledgments; Introduction; Chapter 1: Data Analytics and Its Application in Various Industries; What Is Data Analytics?; Data Collection; Data Preparation; Data Analysis; Model Building; Results; Put into Use; Types of Analytics; Understanding Data and Its Types; What Is Big Data Analytics?; Big Data Analytics Challenges; Data Analytics and Big Data Tools; Role of Analytics in Various Industries; Who Are Analytical Competitors?; Key Models and Their Applications in Various Industries; Summary;Examine business problems and use a practical analytical approach to solve them by implementing predictive models and machine learning techniques using SAS and the R analytical language. This book is ideal for those who are well-versed in writing code and have a basic understanding of statistics, but have limited experience in implementing predictive models and machine learning techniques for analyzing real world data. The most challenging part of solving industrial business problems is the practical and hands-on knowledge of building and deploying advanced predictive models and machine learning algorithms. Applied Analytics through Case Studies Using SAS and R is your answer to solving these business problems by sharpening your analytical skills. What You'll Learn Understand analytics and basic data concepts Use an analytical approach to solve Industrial business problems Build predictive model with machine learning techniques Create and apply analytical strategies Who This Book Is For Data scientists, developers, statisticians, engineers, and research students with a great theoretical understanding of data and statistics who would like to enhance their skills by getting practical exposure in data modeling.