ebook img

Applications to Regular and Bang-Bang Control: Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control PDF

389 Pages·2012·3.065 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Applications to Regular and Bang-Bang Control: Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control

Applications to Regular and Bang-Bang Control DC24_Osmolovskii-MaurerFM.indd 1 10/8/2012 9:29:39 AM Advances in Design and Control SIAM’s Advances in Design and Control series consists of texts and monographs dealing with all areas of design and control and their applications. Topics of interest include shape optimization, multidisciplinary design, trajectory optimization, feedback, and optimal control. The series focuses on the mathematical and computational aspects of engineering design and control that are usable in a wide variety of scientific and engineering disciplines. Editor-in-Chief Ralph C. Smith, North Carolina State University Editorial Board Athanasios C. Antoulas, Rice University Michel C. Delfour, University of Montreal Siva Banda, Air Force Research Laboratory Max D. Gunzburger, Florida State University Belinda A. Batten, Oregon State University J. William Helton, University of California, San Diego John Betts, The Boeing Company (retired) Arthur J. Krener, University of California, Davis Stephen L. Campbell, North Carolina State University Kirsten Morris, University of Waterloo Series Volumes Osmolovskii, Nikolai P. and Maurer, Helmut, Applications to Regular and Bang-Bang Control: Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control Biegler, Lorenz T., Campbell, Stephen L., and Mehrmann, Volker, eds., Control and Optimization with Differential-Algebraic Constraints Delfour, M. C. and Zolésio, J.-P., Shapes and Geometries: Metrics, Analysis, Differential Calculus, and Optimization, Second Edition Hovakimyan, Naira and Cao, Chengyu, L Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation 1 Speyer, Jason L. and Jacobson, David H., Primer on Optimal Control Theory Betts, John T., Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, Second Edition Shima, Tal and Rasmussen, Steven, eds., UAV Cooperative Decision and Control: Challenges and Practical Approaches Speyer, Jason L. and Chung, Walter H., Stochastic Processes, Estimation, and Control Krstic, Miroslav and Smyshlyaev, Andrey, Boundary Control of PDEs: A Course on Backstepping Designs Ito, Kazufumi and Kunisch, Karl, Lagrange Multiplier Approach to Variational Problems and Applications Xue, Dingyü, Chen, YangQuan, and Atherton, Derek P., Linear Feedback Control: Analysis and Design with MATLAB Hanson, Floyd B., Applied Stochastic Processes and Control for Jump-Diffusions: Modeling, Analysis, and Computation Michiels, Wim and Niculescu, Silviu-Iulian, Stability and Stabilization of Time-Delay Systems: An Eigenvalue- Based Approach Ioannou, Petros and Fidan, Barı¸s, Adaptive Control Tutorial Bhaya, Amit and Kaszkurewicz, Eugenius, Control Perspectives on Numerical Algorithms and Matrix Problems Robinett III, Rush D., Wilson, David G., Eisler, G. Richard, and Hurtado, John E., Applied Dynamic Programming for Optimization of Dynamical Systems Huang, J., Nonlinear Output Regulation: Theory and Applications Haslinger, J. and Mäkinen, R. A. E., Introduction to Shape Optimization: Theory, Approximation, and Computation Antoulas, Athanasios C., Approximation of Large-Scale Dynamical Systems Gunzburger, Max D., Perspectives in Flow Control and Optimization Delfour, M. C. and Zolésio, J.-P., Shapes and Geometries: Analysis, Differential Calculus, and Optimization Betts, John T., Practical Methods for Optimal Control Using Nonlinear Programming El Ghaoui, Laurent and Niculescu, Silviu-Iulian, eds., Advances in Linear Matrix Inequality Methods in Control Helton, J. William and James, Matthew R., Extending H Control to Nonlinear Systems: Control of Nonlinear 1 Systems to Achieve Performance Objectives DC24_Osmolovskii-MaurerFM.indd 2 10/8/2012 9:29:39 AM Applications to Regular and Bang-Bang Control Second-Order Necessary and Sufficient Optimality Conditions in Calculus of Variations and Optimal Control Nikolai P. Osmolovskii Systems Research Institute Warszawa, Poland University of Technology and Humanities in Radom Radom, Poland University of Natural Sciences and Humanities in Siedlce Siedlce, Poland Moscow State University Moscow, Russia Helmut Maurer Institute of Computational and Applied Mathematics Westfälische Wilhelms-Universität Münster Münster, Germany Society for Industrial and Applied Mathematics Philadelphia DC24_Osmolovskii-MaurerFM.indd 3 10/8/2012 9:29:39 AM Copyright © 2012 by the Society for Industrial and Applied Mathematics 10 9 8 7 6 5 4 3 2 1 All rights reserved. Printed in the United States of America. No part of this book may be reproduced, stored, or transmitted in any manner without the written permission of the publisher. For information, write to the Society for Industrial and Applied Mathematics, 3600 Market Street, 6th Floor, Philadelphia, PA 19104-2688 USA. No warranties, express or implied, are made by the publisher, authors, and their employers that the programs contained in this volume are free of error. They should not be relied on as the sole basis to solve a problem whose incorrect solution could result in injury to person or property. If the programs are employed in such a manner, it is at the user’s own risk and the publisher, authors, and their employers disclaim all liability for such misuse. Trademarked names may be used in this book without the inclusion of a trademark symbol. These names are used in an editorial context only; no infringement of trademark is intended. GNUPLOT Copyright © 1986–1993, 1998, 2004 Thomas Williams, Colin Kelley. Figure 8.3 reprinted with permission from John Wiley & Sons, Ltd. Figure 8.5 reprinted with permission from Springer Science+Business Media. Figure 8.8 reprinted with permission from Elsevier. Library of Congress Cataloging-in-Publication Data Osmolovskii, N. P. (Nikolai Pavlovich), 1948- Applications to regular and bang-bang control : second-order necessary and sufficient optimality condi- tions in calculus of variations and optimal control / Nikolai P. Osmolovskii, Helmut Maurer. p. cm. -- (Advances in design and control ; 24) Includes bibliographical references and index. ISBN 978-1-611972-35-1 1. Calculus of variations. 2. Control theory. 3. Mathematical optimization. 4. Switching theory. I. Maurer, Helmut. II. Title. QA315.O86 2012 515’.64--dc23 2012025629 is a registered trademark. DC24_Osmolovskii-MaurerFM.indd 4 10/8/2012 9:29:45 AM For our wives, Alla and Gisela j DC24_Osmolovskii-MaurerFM.indd 5 10/8/2012 9:29:45 AM Contents ListofFigures xi Notation xiii Preface xvii Introduction 1 I Second-Order Optimality Conditions for Broken Extremals in the Calculus ofVariations 7 1 AbstractSchemeforObtainingHigher-OrderConditionsinSmooth ExtremalProblemswithConstraints 9 1.1 MainConceptsandMainTheorem . . . . . . . . . . . . . . . . . . . 9 1.2 ProofoftheMainTheorem . . . . . . . . . . . . . . . . . . . . . . . 15 1.3 SimpleApplicationsoftheAbstractScheme . . . . . . . . . . . . . . 21 2 QuadraticConditionsintheGeneralProblemoftheCalculus ofVariations 27 2.1 StatementsofQuadraticConditionsforaPontryaginMinimum . . . . 27 2.2 BasicConstantandtheProblemofItsDecoding . . . . . . . . . . . . 34 2.3 Local Sequences, Higher Order γ, Representation of the Lagrange FunctiononLocalSequenceswithAccuracyuptoo(γ) . . . . . . . . 39 2.4 EstimationoftheBasicConstantfromAbove . . . . . . . . . . . . . 54 2.5 EstimationoftheBasicConstantfromBelow . . . . . . . . . . . . . 75 2.6 CompletingtheProofofTheorem2.4 . . . . . . . . . . . . . . . . . . 102 2.7 Sufficient Conditions for Bounded Strong and Strong Minima in the ProblemonaFixedTimeInterval . . . . . . . . . . . . . . . . . . . . 115 3 QuadraticConditionsforOptimalControlProblemswithMixed Control-StateConstraints 127 3.1 QuadraticNecessaryConditionsintheProblemwithMixedControl- StateEqualityConstraintsonaFixedTimeInterval . . . . . . . . . . 127 3.2 Quadratic Sufficient Conditions in the Problem with Mixed Control- StateEqualityConstraintsonaFixedTimeInterval . . . . . . . . . . 138 vii viii Contents 3.3 QuadraticConditionsintheProblemwithMixedControl-StateEqual- ityConstraintsonaVariableTimeInterval . . . . . . . . . . . . . . . 150 3.4 QuadraticConditionsforOptimalControlProblemswithMixed Control-StateEqualityandInequalityConstraints . . . . . . . . . . . 164 4 Jacobi-TypeConditionsandRiccatiEquationforBrokenExtremals 183 4.1 Jacobi-TypeConditionsandRiccatiEquationforBrokenExtremalsin theSimplestProblemoftheCalculusofVariations . . . . . . . . . . . 183 4.2 RiccatiEquationforBrokenExtremalintheGeneralProblemofthe CalculusofVariations . . . . . . . . . . . . . . . . . . . . . . . . . . 214 II Second-OrderOptimalityConditionsinOptimalBang-BangControl Problems 221 5 Second-OrderOptimalityConditionsinOptimalControlProblems LinearinaPartofControls 223 5.1 QuadraticOptimalityConditionsintheProblemonaFixedTime Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223 5.2 Quadratic Optimality Conditions in the Problem on a Variable Time Interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237 5.3 RiccatiApproach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245 5.4 NumericalExample: OptimalControlofProductionand Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248 6 Second-OrderOptimalityConditionsforBang-BangControl 255 6.1 Bang-BangControlProblemsonNonfixedTimeIntervals . . . . . . . 255 6.2 QuadraticNecessaryandSufficientOptimalityConditions . . . . . . . 259 6.3 SufficientConditionsforPositiveDefinitenessoftheQuadraticForm (cid:3)ontheCriticalConeK . . . . . . . . . . . . . . . . . . . . . . . . 266 6.4 Example: MinimalFuelConsumptionofaCar . . . . . . . . . . . . . 272 6.5 QuadraticOptimalityConditionsinTime-OptimalBang-BangControl Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274 6.6 SufficientConditionsforPositiveDefinitenessoftheQuadraticForm (cid:3)ontheCriticalSubspaceK forTime-OptimalControlProblems . . 281 6.7 NumericalExamplesofTime-OptimalControlProblems . . . . . . . 286 6.8 Time-Optimal Control Problems for Linear Systems with Constant Entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293 7 Bang-BangControlProblemandItsInducedOptimizationProblem 299 7.1 MainResults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 7.2 First-Order Derivatives of x(t ;t ,x ,θ) with Respect to t , t , x , f 0 0 0 f 0 andθ. LagrangeMultipliersandCriticalCones . . . . . . . . . . . . 305 7.3 Second-OrderDerivativesof x(t ;t ,x ,θ)withRespecttot ,t ,x , f 0 0 0 f 0 andθ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310 7.4 Explicit Representation of the Quadratic Form for the Induced Opti- mizationProblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319 Contents ix 7.5 Equivalence of the Quadratic Forms in the Basic and Induced Opti- mizationProblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333 8 NumericalMethodsforSolvingtheInducedOptimizationProblemand Applications 339 8.1 TheArc-ParametrizationMethod . . . . . . . . . . . . . . . . . . . . 339 8.2 Time-OptimalControloftheRayleighEquationRevisited . . . . . . . 344 8.3 Time-OptimalControlofaTwo-LinkRobot . . . . . . . . . . . . . . 346 8.4 Time-OptimalControlofaSingleModeSemiconductorLaser. . . . . 353 8.5 OptimalControlofaBatch-Reactor . . . . . . . . . . . . . . . . . . . 357 8.6 OptimalProductionandMaintenancewithL1-Functional . . . . . . . 361 8.7 VanderPolOscillatorwithBang-SingularControl . . . . . . . . . . . 365 Bibliography 367 Index 377 List of Figures 2.1 Neighborhoodsofthecontrolatapointt ofdiscontinuity. . . . . . . . . 40 1 2.2 Definitionoffunctions(cid:5)(t,v)onneighborhoodsofdiscontinuitypoints.. 51 4.1 Tunnel-diodeoscillator. I denotesinductivity,C capacity,Rresistance, I electriccurrent,andDdiode. . . . . . . . . . . . . . . . . . . . . . . 203 4.2 Rayleighproblemwithregularcontrol. (a)Statevariables. (b)Control. (c)Adjointvariables. (d)SolutionsoftheRiccatiequation(4.140). . . . 204 4.3 Top left: Extremals x(1),x(2) (lower graph). Top right: Variational so- lutions y(1) and y(2) (lower graph) to (4.145). Bottom: Envelope of neighboringextremalsillustratingtheconjugatepointt =0.674437. . . 206 c 5.1 Optimalproductionandmaintenance,finaltimet =0.9. (a)Statevari- f ablesx ,x . (b)Regularproductioncontrolvandbang-bangmaintenance 1 2 controlm. (c)Adjointvariablesψ ,ψ . (d)Maintenancecontrolmwith 1 2 switchingfunctionφ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 m 5.2 Optimalproductionandmaintenance,finaltimet =1.1. (a)Statevari- f ables x ,x . (b) Regular production control v and bang-singular-bang 1 2 maintenance control m. (c)Adjoint variables ψ ,ψ . (d) Maintenance 1 2 controlmwithswitchingfunctionφ . . . . . . . . . . . . . . . . . . . . 252 m 6.1 Minimalfuelconsumptionofacar. (a)Statevariablesx ,x . (b)Bang- 1 2 bangcontrolu. (c)Adjointvariableψ . (d)Switchingfunctionφ. . . . . 274 2 6.2 Time-optimalsolutionofthevanderPoloscillator,fixedterminalstate (6.120). (a) State variables x and x (dashed line). (b) Control u and 1 2 switchingfunctionψ (dashedline). (c)Phaseportrait(x ,x ). (d)Ad- 2 1 2 jointvariablesψ andψ (dashedline). . . . . . . . . . . . . . . . . . . 287 1 2 6.3 Time-optimalsolutionofthevanderPoloscillator,nonlinearboundary condition(6.129). (a)Statevariablesx andx (dashedline). (b)Control 1 2 u and switching function ψ (dashed line). (c) Phase portrait (x ,x ). 2 1 2 (d)Adjointvariablesψ andψ (dashedline). . . . . . . . . . . . . . . 289 1 2 6.4 Time-optimal control of the Rayleigh equation. (a) State variables x 1 and x (dashed line). (b) Control u and switching function φ (dashed 2 line). (c)Phaseportrait(x ,x ). (d)Adjointvariablesψ andψ (dashed 1 2 1 2 line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 xi xii ListofFigures 8.1 Time-optimalcontroloftheRayleighequationwithboundaryconditions (8.31). (a) Bang-bang control and scaled switching function (cid:8)(×4), (b)Statevariablesx ,andx . . . . . . . . . . . . . . . . . . . . . . . . 345 1 2 8.2 Time-optimalcontroloftheRayleighequationwithboundarycondition (8.40). (a)Bang-bangcontroluandscaledswitchingfunctionφ(dashed line). (b)Statevariablesx ,x .. . . . . . . . . . . . . . . . . . . . . . . 346 1 2 (cid:2) (cid:2) 8.3 Two-link robot [67]: upper arm OQ, lower arm OP, and angles q 1 andq . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347 2 8.4 Control of the two-link robot (8.44)–(8.47). (a) Control u and scaled 1 switchingfunctionφ (dashedline). (b)Controlu andscaledswitching 1 2 function φ (dashed line). (c)Angle q and velocity ω . (d)Angle q 2 1 1 2 andvelocityω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349 2 8.5 Control of the two-link robot (8.53)–(8.57). (a) Control u . 1 (b)Controlu . (c)Angleq andvelocityω . (d)Angleq andvelocity 2 1 1 2 ω [17]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351 2 8.6 Controlofthetwo-linkrobot(8.53)–(8.57): Secondsolution. (a)Control u . (b)Controlu . (c)Angleq andvelocityω . (d)Angleq andvelocity 1 2 1 1 2 ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352 2 8.7 Time-optimal control of a semiconductor laser. (a) Normalized pho- ton density S(t)×10−5. (b) Normalized photon density N(t)×10−8. (c) Electric current (control) I(t) with I(t)=I =20.5 for t <0 and 0 I(t)=I∞=42.5fort >tf. (d)AdjointvariablesψS(t),ψN(t). . . . . . 356 8.8 Normalized photon number S(t) for I(t) ≡ 42.5 mA and optimal I(t)[46]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356 8.9 Schematicsofabatch-reactionwithtwocontrolvariables. . . . . . . . . 357 8.10 Control of a batch reactor with functional (8.79). Top row: Control u=(F ,Q)andscaledswitchingfunctions. Middlerow: Molarconcen- B trationsM andM . Bottomrow: Molarconcentrations(M ,M )and A B C D energyholdupH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360 8.11 Control of a batch reactor with functional (8.89). Top row: Control u=(F ,Q) and scaled switching functions. Middle row: Molar con- B centrationsM ,M . Bottomrow: Molarconcentrations(M ,M )and A B C D energyholdupH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362 8.12 OptimalproductionandmaintenancewithL1-functional(8.95). (a)State variablesxandy. (b)Controlvariablesvandm. (c),(d)Controlvariables andswitchingfunctions. . . . . . . . . . . . . . . . . . . . . . . . . . . 364 8.13 ControlofthevanderPoloscillatorwithregulatorfunctional. (a)Bang- singularcontrolu. (b)Statevariablesx andx . . . . . . . . . . . . . . 366 1 2

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.