ebook img

Applications of Regression Techniques PDF

181 Pages·2019·2.128 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Applications of Regression Techniques

Manoranjan Pal · Premananda Bharati Applications of Regression Techniques Applications of Regression Techniques Manoranjan Pal (cid:129) Premananda Bharati Applications of Regression Techniques 123 ManoranjanPal Premananda Bharati Economic ResearchUnit Biological Anthropology Unit Indian Statistical Institute Indian Statistical Institute Kolkata, West Bengal, India Kolkata, West Bengal, India ISBN978-981-13-9313-6 ISBN978-981-13-9314-3 (eBook) https://doi.org/10.1007/978-981-13-9314-3 ©SpringerNatureSingaporePteLtd.2019 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained hereinorforanyerrorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregard tojurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore Preface Letusconfessattheoutsetthatthisbookcannotbeconsideredasatextbook.This book is meant for researchers and teachers of different subjects who use statistical models and techniques. We restrict our attention to techniques of regression anal- ysis. To get the full benefit of this technique, one needs to apply it very carefully and prudently. To do this, it is sometimes necessary to formulate an appropriate regressionmodel.Regressionisaverypowerfultechnique.Manysituationscanbe formulatedasorconvertedtoaregressionmodel.Themainthingistoidentifysuch situations. The book is unique in the sense that none of these works are published in any journalsorotherbooks.Theseareoriginalresearchworksoftheauthors.Thisbook is an outcome of our last 10-year research work. However, most of these results have been presented in different conferences. The readers will encounter many novel techniques of regression. This book starts with an exposition of the regression model and gives the idea behind taking a regression model so that the later chapters can be easily compre- hended. The volume then comprises formulation and estimation of regression decomposition models, hidden Markov chain, contribution of regressors by set-theoretic approach, calorie poverty rate, aggregate growth rate, etc. Each of these techniques discussed in this book has applications leading to answers of many unanswered questions. For example, regression decomposition techniques lead to finding out intra-household gender inequality of consumptions, intra-household allocation of resources, calorie poverty rate, and adult equivalent scales.Theassumptionofatrivariatedistributionofthenutrientintake,saycalorie intake, the income, and the nutrient norm of the households leads us to linear or log-linearregressionequationsdependingonthetypeofjointdistributionassumed forthepurposeofestimation.Theset-theoreticapproachtofindthecontributionof each regressor is another novel technique. Since the explanatory variables are interrelated, apart from the contribution of individual variation of each of the explanatory variables, there are joint effects of these variables on the response variable. We can separate out these effects by the set-theoretic approach. This conceptcanbeusedtofindaformulawhichshowstheextentofmulticollinearityin a k-regressor setup. Formulating a hidden Markov chain is again a skilled work which needs knowledge of the situation in which this formulation is possible. The v vi Preface hidden Markov chain model can be transformed into appropriate simultaneous regressionequationmodel.Ithasmanyapplicationsincludingforecastingtheresult of the election of subsequent years. Finding aggregate growth rate from individual growthratethroughgeometricmean(GM)issometimesimpossiblebecauseofthe fact that there may be a negative component. Since the growth rate is nothing but ratio, GM is preferable. There is a novel idea of getting aggregate growth rate through a modification of GM. This technique can be applied even if any of the growth rates is zero. The modified GM can be found by regression technique after due modification. The techniques are most general and can be applied in other similar situations. Portions of Chaps. 2 and 4 are drawn from the authors’ report of the project ‘Development of Methodology towards Measurement of Poverty’; the project was sponsored by the Ministry of Statistics and Programme Implementation, Govern- ment of India. The copyright is, however, not violated. Also in Chap. 9, we bor- rowed the concept of one of our recent published papers, where the set-theoretic concept of the relative importance of the regressors was first introduced. We have tried to describe the techniques in a very simple manner. Even the difficult concepts are easily understood. This book should be read as a storybook fromthebeginningtotheend.All thestepsareexplained inasmoothmannerand often using examples. Kolkata, India Manoranjan Pal Premananda Bharati Contents 1 Introduction to Correlation and Linear Regression Analysis . . . . . . 1 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Simple Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Simple Linear Regression Analysis . . . . . . . . . . . . . . . . . . . . . . 7 1.4 A Generalization to LS Estimation. . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Comparison of Different Forms . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.6 Multiple Linear Regression Model. . . . . . . . . . . . . . . . . . . . . . . 12 1.7 Transformation of Nonlinear Functions . . . . . . . . . . . . . . . . . . . 14 1.8 The Linear Stochastic Regression Model . . . . . . . . . . . . . . . . . . 14 1.9 Test of Significance for the Sample Correlation Coefficient. . . . . 16 1.10 Testing for Overall Significance of a Regression . . . . . . . . . . . . 16 1.11 Partial Correlation Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.12 Rank Correlation Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2 Regression Decomposition Technique Toward Finding Intra-household Gender Bias of Calorie Consumption . . . . . . . . . . . 19 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2 The Need for Calorie Decomposition. . . . . . . . . . . . . . . . . . . . . 24 2.3 The Model and the Methodology. . . . . . . . . . . . . . . . . . . . . . . . 26 2.4 The Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.5 The Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 2.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Glossary and Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3 Estimation of Poverty Rates by Calorie Decomposition Method. . . . 49 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.2 Smoothing of Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3 Calculation of Poverty Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.4 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 4 Estimating Calorie Poverty Rates Through Regression. . . . . . . . . . . 59 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4.2 Earlier Attempts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 4.3 Objective of the Present Chapter . . . . . . . . . . . . . . . . . . . . . . . . 62 vii viii Contents 4.4 The Proposed Calorie Norms. . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.5 Calorie Poverty Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.6 The Poverty Lines and the Poverty Rates. . . . . . . . . . . . . . . . . . 68 4.7 A New Method of Finding Poverty Rate: Error Distribution Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 4.7.1 The Formulation of the Model . . . . . . . . . . . . . . . . . . . 71 4.8 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.9 Recommendations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Appendix: The Detail Methodology Toward Finding Poverty Rate . . . . 83 5 Prediction of Voting Pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.2 Prediction of Party Positions Assuming Independent Movement of Variables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.3 Prediction of Party Positions Assuming Correlated Structure of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 6 Finding Aggregate Growth Rate Using Regression Technique . . . . . 105 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.2.1 Cross-Section Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 6.2.2 Time Series Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.3 Tackling Zero or Negative Growth Rates. . . . . . . . . . . . . . . . . . 111 6.4 Case of Negative Growth Rates Below Minus 1. . . . . . . . . . . . . 112 6.5 Estimation of Intermediate Growth Rate. . . . . . . . . . . . . . . . . . . 114 6.6 Summary and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 7 Testing Linear Restrictions of Parameters in Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 7.2 To See Whether a Coefficient is Equal to a Specific Value . . . . . 125 7.3 To See Whether Two Coefficients are Equal . . . . . . . . . . . . . . . 126 7.4 To See Whether a Specific Linear Combination of the Coefficients is Always Constant. . . . . . . . . . . . . . . . . . . . . . . . . 127 7.5 Applications Using a Set of Artificial Data. . . . . . . . . . . . . . . . . 127 7.5.1 To Test Whether a Coefficient Takes a Specific Value. . . . . . . . . . . . . . . . . . . . . . . . . 129 7.5.2 To Test Whether a Linear Combination of Parameters Takes a Specific Value. . . . . . . . . . . . . . . . . . . . . . . . . 130 7.6 Testing Cross-equation Restrictions . . . . . . . . . . . . . . . . . . . . . . 131 7.7 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 Contents ix 8 The Regression Models with Dummy Explanatory Variables . . . . . . 135 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8.2 The Regression Models with Dummy Explanatory Variable . . . . 137 8.3 Polychotomous Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 139 8.4 Interaction Terms and Their Use . . . . . . . . . . . . . . . . . . . . . . . . 142 8.5 Both Dependent and Explanatory Variables are Qualitative. . . . . 144 8.6 Qualitative and Quantitative Explanatory Variables. . . . . . . . . . . 145 8.6.1 Intercept Dummy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 8.6.2 Slope Dummy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 8.6.3 Both Slope and Intercept Dummy . . . . . . . . . . . . . . . . . 146 8.6.4 Both Slope and Intercept Dummy: Discussions . . . . . . . 147 8.7 Asymmetric Response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 8.8 The Chow Test. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 8.8.1 The Case Where n < k . . . . . . . . . . . . . . . . . . . . . . . . 149 2 8.8.2 The Use of Dummy Variable to Test the Equality of Structural Parameters of the Two Periods . . . . . . . . . 149 8.9 Detection of Outlying Observations by Dummy Variables. . . . . . 150 8.10 Prediction by Dummy Variables . . . . . . . . . . . . . . . . . . . . . . . . 151 8.11 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 Appendix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 9 Relative Contribution of Regressors . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 9.2 The Concept of Explained and Unexplained Variances in Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 9.3 Different Measures of Relative Importance. . . . . . . . . . . . . . . . . 159 9.3.1 Allocation Beta-Squared. . . . . . . . . . . . . . . . . . . . . . . . 159 9.3.2 Allocation First: Squares of Simple Correlations or Zero-Order Correlations . . . . . . . . . . . . . . . . . . . . . . 160 9.3.3 Allocation Last . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 9.3.4 Hoffman–Pratt Decomposition of R2 . . . . . . . . . . . . . . . 160 9.3.5 LMG or Shapley Decomposition. . . . . . . . . . . . . . . . . . 162 9.3.6 Relative Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163 9.4 The Set-Theoretic Approach to Relative Importance . . . . . . . . . . 164 9.4.1 Degree of Multicollinearity. . . . . . . . . . . . . . . . . . . . . . 165 9.4.2 An Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 9.5 Concluding Remarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 References.... .... .... .... ..... .... .... .... .... .... ..... .... 171 About the Authors Manoranjan Pal former Professor at the Economic Research Unit (ERU), Indian Statistical Institute (ISI), obtained his Ph.D. in Statistics from the Indian Statistical Institute. He has held visiting faculty positions at academic and government institutions in various countries, including the National Statistical Office of Mon- golia; South Asia Institute (SAI), University of Heidelberg, Germany; Centre for Operations Research and Econometrics (CORE), Louvain la Neuve University, Belgium; Institute of Mathematical Sciences, Faculty of Science, University of Malay, Malaysia; and the Department of Statistics, Rajshahi University, Bangla- desh.HewasMemberSecretaryoftheInternationalStatisticalEducationCentrefor morethantenyears.Hehaspublishedover100researchpapersinreputednational andinternationaljournalsandbooks.Hisresearchinterestsincludemeasurementof poverty, inequality and segregation, applied econometrics, measurement of health and nutrition status, gender bias and empowerment of women. Premananda Bharati former Professorat theIndianStatistical Institute, obtained his Ph.D. in Anthropology from the University of Calcutta. He has extensive teaching experience, including teaching courses in Anthropology to graduate and postgraduate students at the Indian Statistical Institute and other universities, includinginstitutesabroad.HeisanexaminerandpapersetterinAnthropologyfor variousuniversities,andreviewspapersforanumberofjournals.Hehaspublished more than 100 papers in reputed national and international journals. His research interestsincludenutritionandhealth,anthropometry,empowermentofwomenand tribal communities. xi

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.