ebook img

Applications of q-Calculus in Operator Theory PDF

274 Pages·2013·1.716 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Applications of q-Calculus in Operator Theory

Ali Aral · Vijay Gupta Ravi P. Agarwal Applications of q-Calculus in Operator Theory Applications of q-Calculus in Operator Theory Ali Aral • Vijay Gupta (cid:129) Ravi P. Agarwal Applications of q-Calculus in Operator Theory 123 AliAral VijayGupta DepartmentofMathematics SchoolofAppliedSciences KırıkkaleUniversity NetajiSubhasInstituteofTechnology Yahs¸ihan,Kirikkale,Turkey NewDelhi,India RaviP.Agarwal DepartmentofMathematics TexasA&MUniversity-Kingsville Kingsville,Texas,USA ISBN978-1-4614-6945-2 ISBN978-1-4614-6946-9(eBook) DOI10.1007/978-1-4614-6946-9 SpringerNewYorkHeidelbergDordrechtLondon LibraryofCongressControlNumber:2013934278 MathematicsSubjectClassification(2010):41A36-41A25-41A17-30E10 ©SpringerScience+BusinessMediaNewYork2013 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.Exemptedfromthislegalreservationarebriefexcerptsinconnection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’slocation,initscurrentversion,andpermissionforusemustalwaysbeobtainedfromSpringer. PermissionsforusemaybeobtainedthroughRightsLinkattheCopyrightClearanceCenter.Violations areliabletoprosecutionundertherespectiveCopyrightLaw. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. While the advice and information in this book are believed to be true and accurate at the date of publication,neithertheauthorsnortheeditorsnorthepublishercanacceptanylegalresponsibilityfor anyerrorsoromissionsthatmaybemade.Thepublishermakesnowarranty,expressorimplied,with respecttothematerialcontainedherein. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Preface Simply, quantum calculus is ordinary classical calculus without the notion of limits. It defines q-calculus and h-calculus. Here h ostensibly stands for Planck’s constant, while q stands for quantum. A pioneer of q-calculus in approximation theoryis the formerProfessorAlexandruLupas[117], who firstintroducedtheq- analogueofBernsteinpolynomials.TenyearslaterPhillips[133]introducedanother generalization on Bernstein polynomials [113] based on q-integers. Ostrovska [125,127] studied q-Bernstein polynomials. After that several researchers have estimatedtheapproximationpropertiesofseveraloperators.Thisbookisanattempt tocompileandpresentsomepapersonq-calculusinapproximationtheory. Wedividethebookintosevenchapters.InChap.1,wementionsomenotations and basic definitions of q-calculus, which will be used throughout the book. We also present the generating functions of some of the important q-basis functions. In Chap.2, we present some discrete q-operators, which include the q-Bernstein polynomials, q-Baskakov operators, q-Sza´sz operators, q-Blemian–Butzer–Hahn operators,andq-Meyer–Ko¨nigandZelleroperators.Wepresenttheapproximation propertiesofsuchoperators. In Chap.3, we present the q-analogue of integral operators which include q- Picard and q-Weierstrass-type singular integral operators and study their rate of convergenceandweightapproximation.Wealsodiscusserrorestimationandglobal smoothness preservation property of such operators. In the last section of this chapter,westudygeneralizedPicardoperatorsandpointwiseconvergence,orderof pointwiseconvergence,andnormconvergenceofthegeneralizedoperators.Inthe lastsection,westudytheq-Meyer–Ko¨nig–Zeller–Durrmeyeroperatorsandestimate themomentsandsomedirectresults. In Chap.4, we study the integral modifications of Bernstein operators using the q-beta functions of the first kind. We present the approximation properties of the q-Bernstein–Kantorovichoperators, q-Bernstein–Durrmeyerpolynomials, dis- cretely defined q-Durrmeyer-type operators, and genuine q-Bernstein–Durrmeyer operators.Wementionthemomentestimation,directresults,andthelimitingcon- vergenceofsuchoperators.Wehavealsoincludedasectiononfuzzyapproximation andapplications. v vi Preface InChap.5,wediscusssomeotherrecentlyintroducedq-integraloperatorsonthe positive real axis. To tackle such operators, we generally use q-beta functions of thesecondkind.Thischapterincludesq-Baskakov–Durrmeyeroperators,q-Sza´sz- betaoperators,q-Sza´sz–Durrmeyeroperators,andq-Phillipsoperators.Wepresent moments, recurrence relations for moments, asymptotic formula, and weighted approximationsforsuchoperators. InChap.6,westudythestatisticalconvergenceoftheq-operators.Wemention results for a general class of positive linear operators and present statistical approximationpropertiesinweightedspace.Wealsopresenttheresultsforq-Sza´sz– King-type operatorsand q-Baskakov–Kantorovichoperatorsand the study rate of convergence. In the last chapter, we present the quantitative Voronovskaja-type estimate for certainq-Durrmeyerpolynomials.Inthis way,we putin evidencethe overconver- gencephenomenonforthese q-Durrmeyerpolynomials,namely,the extensionsof approximationproperties(with quantitative estimates) from the real interval [0,1] to compact disks in the complex plane. Also, we study the complex q-Gauss– Weierstrass integraloperators.We showthattheseoperatorsare anapproximation process in some subclasses of analytic functions giving Jackson-type estimates in approximation. Furthermore, we give q-calculus analogues of some shape- preservingpropertiesfortheseoperatorssatisfiedbytheclassicalcomplexGauss– Weierstrassintegraloperators. Kirikkale,Turkey AliAral NewDelhi,India VijayGupta Kingsville,TX RaviP.Agarwal Contents Introduction ...................................................................... xi 1 Introductionofq-Calculus.................................................. 1 1.1 NotationsandDefinitionsinq-Calculus............................... 1 1.2 q-Derivative ............................................................. 3 1.3 q-SeriesExpansions..................................................... 5 1.4 GeneratingFunctions................................................... 8 1.4.1 GeneratingFunctionforq-BernsteinBasis.................... 9 1.4.2 GeneratingFunctionforq-MKZ............................... 10 1.4.3 GeneratingFunctionforq-BetaBasis ......................... 10 1.5 q-Integral................................................................ 11 2 q-DiscreteOperatorsandTheirResults................................... 15 2.1 q-BernsteinOperators................................................... 15 2.1.1 Introduction..................................................... 16 2.1.2 BernsteinPolynomials.......................................... 16 2.1.3 Convergence .................................................... 18 2.1.4 Voronovskaya’sTheorem....................................... 20 2.2 q-Sza´szOperators....................................................... 22 2.2.1 Introduction..................................................... 23 2.2.2 ConstructionofOperators...................................... 23 2.2.3 AuxiliaryResult ................................................ 24 2.2.4 ConvergenceofSqn(f) ......................................... 25 n 2.2.5 ConvergencePropertiesinWeightedSpace................... 29 2.2.6 OtherProperties................................................. 32 2.3 q-BaskakovOperators .................................................. 35 2.3.1 ConstructionofOperatorsandSomePropertiesofThem.... 35 2.3.2 ApproximationProperties...................................... 40 2.3.3 Shape-PreservingProperties ................................... 42 2.3.4 MonotonicityProperty ......................................... 45 vii viii Contents 2.4 ApproximationPropertiesofq-BaskakovOperators.................. 48 2.4.1 Introduction..................................................... 48 2.4.2 MainResults.................................................... 50 2.4.3 Proofs............................................................ 50 2.5 q-Bleimann–Butzer–HahnOperators .................................. 62 2.5.1 Introduction..................................................... 63 2.5.2 ConstructionoftheOperators.................................. 63 2.5.3 PropertiesoftheOperators..................................... 65 2.5.4 SomeGeneralizationofL ..................................... 71 n 3 q-IntegralOperators......................................................... 73 3.1 q-Picardandq-Gauss–WeierstrassSingularIntegralOperator ....... 73 3.1.1 Introduction..................................................... 73 3.1.2 RateofConvergenceinL (R)................................. 75 p 3.1.3 ConvergenceinWeightedSpace............................... 78 3.1.4 ApproximationError ........................................... 80 3.1.5 GlobalSmoothnessPreservationProperty .................... 84 3.2 GeneralizedPicardOperators .......................................... 85 3.2.1 Introduction..................................................... 86 3.2.2 PointwiseConvergence......................................... 91 3.2.3 OrderofPointwiseConvergence............................... 95 3.2.4 NormConvergence............................................. 98 3.3 q-Meyer–Ko¨nig–Zeller–DurrmeyerOperators ........................ 100 3.3.1 Introduction..................................................... 101 3.3.2 EstimationofMoments......................................... 101 3.3.3 Convergence .................................................... 106 4 q-Bernstein-TypeIntegralOperators...................................... 113 4.1 Introduction ............................................................. 113 4.2 q-Bernstein–KantorovichOperators ................................... 113 4.2.1 DirectResults................................................... 114 4.3 q-Bernstein–DurrmeyerOperators..................................... 117 4.3.1 AuxiliaryResults ............................................... 117 4.3.2 DirectResults................................................... 121 4.3.3 ApplicationstoRandomandFuzzyApproximation.......... 127 4.4 DiscretelyDefinedq-DurrmeyerOperators............................ 132 4.4.1 MomentEstimation............................................. 132 4.4.2 RateofApproximation......................................... 134 4.5 Genuineq-Bernstein–DurrmeyerOperators........................... 139 4.5.1 Moments ........................................................ 139 4.5.2 DirectResults................................................... 140 Contents ix 4.6 q-BernsteinJacobiOperators........................................... 141 4.6.1 BasicResults.................................................... 142 4.6.2 Convergence .................................................... 143 5 q-Summation–IntegralOperators.......................................... 145 5.1 q-Baskakov–DurrmeyerOperators..................................... 145 5.1.1 ConstructionofOperators...................................... 146 5.1.2 LocalApproximation........................................... 151 5.1.3 RateofConvergence............................................ 154 5.1.4 WeightedApproximation....................................... 155 5.1.5 RecurrenceRelationandAsymptoticFormula................ 157 5.2 q-Sza´sz-BetaOperators................................................. 164 5.2.1 ConstructionofOperators...................................... 164 5.2.2 DirectTheorem................................................. 167 5.2.3 WeightedApproximation....................................... 170 5.3 q-Sza´sz–DurrmeyerOperators ......................................... 171 5.3.1 AuxiliaryResults ............................................... 172 5.3.2 ApproximationProperties...................................... 175 5.4 q-PhillipsOperators..................................................... 180 5.4.1 Moments ........................................................ 181 5.4.2 DirectResults................................................... 184 5.4.3 Voronovskaja-TypeTheorem................................... 190 6 StatisticalConvergenceofq-Operators.................................... 195 6.1 GeneralClassofPositiveLinearOperators............................ 196 6.1.1 NotationsandPreliminaryResults............................. 196 6.1.2 ConstructionoftheOperators.................................. 196 6.1.3 StatisticalApproximationPropertiesinWeightedSpace..... 200 6.1.4 SpecialCasesofT Operator................................... 203 n 6.2 q-Sza´sz–King-typeOperators .......................................... 205 6.2.1 NotationsandPreliminaries.................................... 205 6.2.2 WeightedStatisticalApproximationProperty................. 207 6.2.3 RateofWeightedApproximation.............................. 209 6.3 q-Baskakov–KantorovichOperators................................... 213 6.3.1 Introduction..................................................... 213 6.3.2 q-AnalogueofBaskakov–KantorovichOperators ............ 215 6.3.3 WeightedStatisticalApproximationProperties............... 217 6.3.4 RateofConvergence............................................ 218 7 q-ComplexOperators........................................................ 223 7.1 Summation-Integral-TypeOperatorsinCompactDisks .............. 223 7.1.1 BasicResults.................................................... 224 7.1.2 UpperBound.................................................... 228 7.1.3 AsymptoticFormulaandExactOrder......................... 230 7.2 q-Gauss–WeierstrassOperator ......................................... 238 7.2.1 Introduction..................................................... 238

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.