Applications of Physics and Geometry to Finance A Dissertation Presented by Jaehyung Choi to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Physics Stony Brook University May 2014 Stony Brook University The Graduate School Jaehyung Choi We, the dissertation committee for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation. Robert J. Frey - Dissertation Advisor Research Professor, Dept. of Applied Mathematics and Statistics Jacobus Verbaarschot - Co-Advisor Professor, Department of Physics and Astronomy Alfred S. Goldhaber - Chairperson of Defense Professor, Department of Physics and Astronomy Dominik Schneble - Committee Member Associate Professor, Department of Physics and Astronomy Noah Smith - External Committee Member Assistant Professor, College of Business This dissertation is accepted by the Graduate School. Charles Taber Dean of the Graduate School. ii Abstract of the Dissertation Applications of Physics and Geometry to Finance by Jaehyung Choi Doctor of Philosophy in Physics Stony Brook University 2014 Market anomalies in finance are the most interesting topics to aca- demics and practitioners. The chances of the systematic arbitrage are not only the counter-examples to the efficient market hypothe- sis but also the sources of profitable trading strategies to the prac- titioners. Approaches to finding, predicting, and explaining the anomalies by using ideas from physics and geometry had not been permeated. Inthefirstpart, Idevelopmonthlymomentumandweeklycontrar- ian strategies with stock selection rules based on various measures from risk management and analogy of momentum in physics. The iii better performance and risk profile are achieved by the alternative strategies implemented in diverse asset classes and markets. The concept of spontaneous symmetry breaking is suggested for modeling the arbitrage dynamics. In the model, the arbitrage strategy is considered as being in the symmetry breaking phase and the phase transition between arbitrage mode and no-arbitrage mode is triggered by a control parameter. It is also tested with contrarian strategies in various markets. In the last part, I prove the correspondence between K¨ahler man- ifold and information geometry of signal processing models under conditions on transfer function. The various advantages of intro- ducing the Ka¨hler manifold are visited. Several implications to time series models are also given in the K¨ahlerian information ge- ometry. iv Contents List of Figures ix List of Tables xi Acknowledgements xiv Vita and Publication xvi 1 Introduction 1 2 Fundamentals of momentum and contrarian strategies 12 3 Maximumm drawdown, recovery, and momentum 20 3.1 Construction of stock selection rules . . . . . . . . . . . . . . . 21 3.2 Dataset and methodology . . . . . . . . . . . . . . . . . . . . 25 3.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . 26 3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3.1 South Korea equity market: KOSPI 200 . . . . . . . . 27 3.3.2 U.S. equity market: SPDR sector ETFs . . . . . . . . . 33 v 3.3.3 U. S. equity market: S&P 500 . . . . . . . . . . . . . . 38 3.3.4 Overall results . . . . . . . . . . . . . . . . . . . . . . . 44 3.4 Factor analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.4.1 Weekly . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.4.2 Monthly . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 50 4 Reward-risk momentum strategies using classical tempered stable distribution 52 4.1 Risk model and reward-risk measures . . . . . . . . . . . . . . 53 4.1.1 Risk model . . . . . . . . . . . . . . . . . . . . . . . . 53 4.1.2 Reward-risk measures . . . . . . . . . . . . . . . . . . . 54 4.2 Dataset and methodology . . . . . . . . . . . . . . . . . . . . 57 4.2.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 57 4.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . 60 4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4.3.1 Currency markets . . . . . . . . . . . . . . . . . . . . . 61 4.3.2 Commodity markets . . . . . . . . . . . . . . . . . . . 66 4.3.3 Global stock benchmark indices . . . . . . . . . . . . . 70 4.3.4 South Korea equity market: KOSPI 200 . . . . . . . . 74 4.3.5 U.S. equity market: SPDR sector ETFs . . . . . . . . . 78 4.3.6 U.S. equity market: S&P 500 . . . . . . . . . . . . . . 82 4.3.7 Overall results in various universes . . . . . . . . . . . 87 4.4 Factor analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 89 4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 91 vi 5 Physical approach to price momentum and its application to momentum strategy 94 5.1 Theoretical background . . . . . . . . . . . . . . . . . . . . . . 95 5.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 5.2.1 South Korea equity markets: KOSPI 200 . . . . . . . . 103 5.2.2 U.S. equity markets: S&P 500 . . . . . . . . . . . . . . 103 5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.3.1 South Korea equity market: KOSPI 200 . . . . . . . . 104 5.3.2 U.S. equity market: S&P 500 . . . . . . . . . . . . . . 107 5.4 Factor analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 110 5.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 112 6 Spontaneous symmetry breaking of arbitrage 114 6.1 Spontaneous symmetry breaking of arbitrage . . . . . . . . . . 115 6.1.1 Arbitrage modeling . . . . . . . . . . . . . . . . . . . . 115 6.1.2 Asymptotic solutions . . . . . . . . . . . . . . . . . . . 117 6.1.3 Exact solutions . . . . . . . . . . . . . . . . . . . . . . 121 6.2 Application to real trading strategy . . . . . . . . . . . . . . . 124 6.2.1 Method and estimation of parameters . . . . . . . . . . 124 6.2.2 Data sets for the strategy . . . . . . . . . . . . . . . . 129 6.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 6.3 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . 137 7 K¨ahlerian information geometry for signal processing 140 7.1 Information geometry for signal processing . . . . . . . . . . . 141 7.1.1 Spectral density representation in frequency domain . . 141 vii 7.1.2 Transfer function representation in z-domain . . . . . . 145 7.2 Ka¨hler manifold for signal processing . . . . . . . . . . . . . . 154 7.3 Example: AR, MA, and ARMA models . . . . . . . . . . . . . 166 7.3.1 AR(p) and MA(q) models . . . . . . . . . . . . . . . . 167 7.3.2 ARMA(p,q) model . . . . . . . . . . . . . . . . . . . . 171 7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 8 Conclusion 177 Bibliography 179 viii List of Figures 3.1 For weekly contrarian, cumulative returns for the traditional contrarian (gray), R (blue), CR (red), and CMR (green). For monthly momentum, cumulative returns for the traditional mo- mentum (gray), CM (blue), RM (red), and CMR (green). . . . 45 4.1 Cumulative returns for the traditional momentum (gray), R- ratio(50%,99%)(blue),R-ratio(50%,95%)(red),andR-ratio(50%,90%) (green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.1 Cumulativereturnsforthetraditionalcontrarian(gray),p(1)(υ,R) (blue), p(2)(υ,R) (red), and p(3)(1/σ,R) (green) in South Korea KOSPI 200. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 5.2 Cumulativereturnsforthetraditionalcontrarian(gray),p(1)(υ,R) (blue), p(2)(υ,R) (red), and p(3)(1/σ,R) (green) in U.S. S&P 500.109 6.1 Return vs. λ/λ . In the left graph, t=5 (blue), t=10 (red), c t=25 (black), and t=∞ (gray dashed). In the right graph, t=∞ (black) and λ/λ = 1 (red dotted) . . . . . . . . . . . . . . . . 122 c 6.2 Return vs. time. long-living arbitrage mode (blue), short-living arbitragemode(reddashed),andasymptoticreturn(graydashed)122 ix 6.3 Flowchartoftheschemebasedonspontaneoussymmetrybreak- ing concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 6.4 Cumulative excessive weekly returns in S&P 500 and KOSPI 200. Returntimeseriesbycontrarianstrategy(blue), bywinner (gray), by loser (gray dashed), and by benchmark (red dashed) 131 6.5 S&P 500. SSB-aided weekly contrarian strategy (blue) and naive weekly contrarian strategy (red dashed). MA window size ranges from 2 to 100. . . . . . . . . . . . . . . . . . . . . 134 6.6 KOSPI 200. SSB-aided weekly contrarian strategy (blue) and naive weekly contrarian strategy (red dashed). MA window size ranges from 2 to 100. . . . . . . . . . . . . . . . . . . . . . . . 135 x
Description: