ebook img

Applications of nonlinear analysis PDF

932 Pages·2018·7.456 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Applications of nonlinear analysis

Springer Optimization and Its Applications Volume134 ManagingEditor PanosM.Pardalos(UniversityofFlorida) Editor–CombinatorialOptimization Ding-ZhuDu(UniversityofTexasatDallas) AdvisoryBoards J.Birge(UniversityofChicago) C.A.Floudas(TexasA&MUniversity) F.Giannessi(UniversityofPisa) H.D.Sherali(VirginiaPolytechnicandStateUniversity) T.Terlaky(LehighUniversity) Y.Ye(StanfordUniversity) AimsandScope Optimizationhasbeenexpandinginalldirectionsatanastonishingrateduringthe lastfewdecades.Newalgorithmicandtheoreticaltechniqueshavebeendeveloped, thediffusionintootherdisciplineshasproceededatarapidpace,andourknowledge ofallaspectsofthefieldhasgrownevenmoreprofound.Atthesametime,oneofthe most striking trends in optimization is the constantly increasing emphasis on the interdisciplinarynatureofthefield.Optimizationhasbeenabasictoolinallareasof appliedmathematics,engineering,medicine,economicsandothersciences. The series Springer Optimization and Its Applications aims to publish state- of-the-art expository works (monographs, contributed volumes, textbooks) that focusonalgorithmsforsolvingoptimizationproblemsandalsostudyapplications involvingsuchproblems.Someofthetopicscoveredincludenonlinearoptimization (convex and nonconvex), network flow problems, stochastic optimization, optimal control, discrete optimization, multi-objective programming, description of soft- warepackages,approximationtechniquesandheuristicapproaches. Moreinformationaboutthisseriesathttp://www.springer.com/series/7393 Themistocles M. Rassias Editor Applications of Nonlinear Analysis 123 Editor ThemistoclesM.Rassias DepartmentofMathematics NationalTechnicalUniversityofAthens Athens,Greece ISSN1931-6828 ISSN1931-6836 (electronic) SpringerOptimizationandItsApplications ISBN978-3-319-89814-8 ISBN978-3-319-89815-5 (eBook) https://doi.org/10.1007/978-3-319-89815-5 LibraryofCongressControlNumber:2018946611 MathematicsSubjectClassification:26-XX,28-XX,30-XX,32-XX,34-XX,35-XX,37-XX,39-XX, 41-XX,43-XX,45-XX,46-XX,47-XX,49-XX,52-XX,53-XX,54-XX,57-XX,58-XX,65-XX ©SpringerInternationalPublishingAG,partofSpringerNature2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAGpart ofSpringerNature. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface TheApplicationsofNonlinearAnalysispresentssomeclassicalandnewresultsin importantsubjectsofnonlinearanalysisanditsapplications. The contributing papers have been written by experts from the international mathematical community. These papers deepen our understanding of some of the mostessentialresearchproblemsandtheoriesofnonlinearnature. Efforthasbeenmadeforthepresentationoftheconcepts,theories,andmethods toreachwidereadership. I would like to express my thanks to all the scientists who contributed to the preparationofthisvolume.Iwouldalsoliketoacknowledgethesuperbassistance ofthestaffofSpringerforthepublicationofthisbook. Athens,Greece ThemistoclesM.Rassias v Contents NewApplicationsofγ-Quasiconvexity ........................................ 1 ShoshanaAbramovich 1 Introduction .................................................................. 1 2 JensenandSlater-Pecˇaric´ TypeInequalitiesforN-quasiconvex Functions..................................................................... 3 2.1 Jensen and Slater-Pecˇaric´ Type Inequalities for N-quasiconvexFunctionswithNon-negativeCoefficients......... 3 2.2 JensenandSlater-Pecˇaric´ TypeInequalitiesforSteffensen’s Coefficients........................................................... 5 3 HardyTypeInequalitiesforγ-QuasiconvexFunctions.................... 9 4 γ-QuasiconvexityandNewHölderTypeInequalities ..................... 10 5 MinkowskiTypeInequalitiesUsing1-Quasiconvexity.................... 13 6 Boundsof“Jensen’sGap”forN-quasiconvexFunctions.................. 15 6.1 BoundsforDifferenceBetweenTwo“Jensen’sGaps”for N-quasiconvexFunctions............................................ 15 6.2 JensenGapandTaylorPowerSeries................................ 18 References ......................................................................... 19 CriteriaforConvergenceofIteratesinaCompression-Expansion FixedPointTheoremofFunctionalType ..................................... 21 RichardI.Avery,DouglasR.Anderson,andJohnnyHenderson 1 Introduction .................................................................. 21 2 Preliminaries ................................................................. 22 3 Application................................................................... 27 References ......................................................................... 35 OnLagrangianDualityinInfiniteDimensionandItsApplications ....... 37 AntonioCausa,GiandomenicoMastroeni,andFabioRaciti 1 Introduction .................................................................. 37 2 LagrangianDualityinaClassicalFramework.............................. 38 3 ACharacterizationofStrongDualityinInfiniteDimension............... 46 vii viii Contents 4 ApplicationtoGeneralizedNashEquilibriumProblemsinInfinite DimensionalSpaces ......................................................... 51 4.1 TheSettingoftheGame............................................. 51 4.2 LagrangeMultipliersRule........................................... 53 4.3 TheRoleofAssumptionS........................................... 55 5 ConclusionandFurtherResearchDirections............................... 58 Appendix........................................................................... 58 References ......................................................................... 59 Stability Analysis of the Inverse Problem of Parameter IdentificationinMixedVariationalProblems................................. 61 M.Cho,A.A.Khan,T.Malysheva,M.Sama,andL.White 1 Introduction .................................................................. 61 2 ProblemFormulationandPreliminaryResults............................. 63 3 OptimizationFormulations.................................................. 68 4 AsymptoticStabilityoftheMOLSApproach.............................. 72 5 LocalStabilityEstimates.................................................... 76 5.1 StabilityoftheOutputLeast-SquaresApproach.................... 77 5.2 StabilityoftheModifiedOutputLeast-SquaresApproach......... 84 5.3 StabilityoftheEnergyOutputLeast-SquaresApproach........... 87 6 ComputationalResults....................................................... 90 6.1 ElasticityImagingInverseProblem ................................. 91 6.2 IdentificationinStokesEquations................................... 92 6.3 PerformanceAnalysis................................................ 94 6.4 ErrorAnalysisforDecreasingλ..................................... 94 7 ConcludingRemarks......................................................... 96 Appendix:ToolsfromStabilityandOptimizationTheory ...................... 97 References ......................................................................... 99 NonlinearDualityinBanachSpacesandApplicationstoFinance andElasticity ..................................................................... 101 G.Colajanni,PatriziaDaniele,SofiaGiuffrè,andAntoninoMaugeri 1 TheStrongDualityintheInfinite-DimensionalSetting ................... 101 1.1 AssumptionS......................................................... 102 (cid:2) 1.2 AssumptionS ........................................................ 104 1.3 StrongDualityintheCaseofNonlinearEqualityConstrains...... 104 1.4 NES(NonEmptySubdifferentialCondition)....................... 108 2 ApplicationstotheGeneralFinancialEquilibriumProblem .............. 109 2.1 PresentationoftheModel............................................ 109 2.2 TheDualityfortheFinancialEquilibriumProblem................ 115 2.3 TheViewpointsoftheSectorandoftheSystem ................... 117 2.4 TheContagionProblem.............................................. 119 2.5 AnExampleofaMarkowitz-TypeRiskMeasure .................. 121 3 ApplicationstotheElastic-PlasticTorsionProblem ....................... 121 3.1 PresentationoftheProblem.......................................... 121 3.2 TheElastic-PlasticTorsionProblemforLinearOperators......... 123 Contents ix 3.3 The Elastic-Plastic Torsion Problem for Nonlinear MonotoneOperators ................................................. 128 3.4 VonMisesFunctions................................................. 133 3.5 RadialSolutions...................................................... 134 References ......................................................................... 137 SelectivePrioritiesinProcessingofBigData................................. 141 NicholasJ.Daras 1 Introduction .................................................................. 141 2 RationalChoiceofDataSets ............................................... 142 2.1 ProgramsofDataSelections......................................... 142 2.2 DataSelectionPreferences........................................... 143 2.3 WeightedDataSystemsandDataAmountProcessing Capacities............................................................. 146 2.4 Topology of the Space of Data Selection Preferences: NeighboringSelectionPreferences.................................. 147 2.5 TheLowerHemicontinuityfortheRationalChoiceofData Amount ............................................................... 149 2.6 MeanRationalDataAmountChoice................................ 151 3 ContrastingSelectivePriorities ............................................. 162 3.1 Introduction........................................................... 162 3.2 MainDefinitions ..................................................... 163 3.3 ContrastCoreandContrastEquilibriums .......................... 165 3.4 DeterminatenessofDataEquilibriumVectors...................... 170 References ......................................................................... 173 GeneralInertialMannAlgorithmsandTheirConvergenceAnalysis forNonexpansiveMappings .................................................... 175 Qiao-LiDong,YeolJeCho,and ThemistoclesM.Rassias 1 Introduction .................................................................. 175 2 Preliminaries ................................................................. 178 3 TheGeneralInertialMannAlgorithms..................................... 179 3.1 RevisittheAcceleratedMannAlgorithm ........................... 179 3.2 Algorithms............................................................ 181 4 ConvergenceAnalysis....................................................... 182 5 Applications.................................................................. 186 6 NumericalExamplesandConclusions...................................... 188 References ......................................................................... 189 ReversesofJensen’sIntegralInequalityandApplications:ASurvey ofRecentResults................................................................. 193 SilvestruSeverDragomir 1 Introduction .................................................................. 193 2 ARefinementandaDivided-DifferenceReverse.......................... 199 2.1 GeneralResults....................................................... 199 2.2 ApplicationsfortheHölderInequality.............................. 206 2.3 Applicationsforf-Divergence...................................... 208 x Contents 3 ReverseInequalitiesinTermsofFirstDerivative .......................... 213 3.1 GeneralResults....................................................... 213 3.2 ApplicationsfortheHölderInequality.............................. 220 3.3 Applicationsforf-Divergence...................................... 223 4 MoreReverseInequalities................................................... 225 4.1 GeneralResults....................................................... 225 4.2 ApplicationsfortheHölderInequality.............................. 232 4.3 Applicationsforf-Divergence...................................... 237 5 SuperadditivityandMonotonicityProperties............................... 239 5.1 GeneralResults....................................................... 239 5.2 ApplicationsfortheHölderInequality.............................. 245 5.3 Applicationsforf-DivergenceMeasures........................... 246 6 InequalitiesforSelfadjointOperators....................................... 247 6.1 PreliminaryFacts..................................................... 247 6.2 ReversesforFunctionsofOperators ................................ 249 6.3 SomeExamples ...................................................... 256 References ......................................................................... 261 OrderingStructuresandTheirApplications ................................. 265 GabrieleEichfelderandMariaPilecka 1 Introduction .................................................................. 265 2 Pre-andPartialOrders....................................................... 266 3 OrderingStructuresinLinearSpaces....................................... 268 3.1 Pre-orders,PartialOrdersandCones................................ 268 3.2 Bishop-PhelpsCones................................................. 272 3.3 PolyhedralCones..................................................... 278 3.4 OrderingSets......................................................... 280 4 VariableOrderingStructures................................................ 283 4.1 IntroductiontoVariableOrderingStructures ....................... 283 4.2 BasicPropertiesofVariableOrderingStructures................... 288 4.3 OrderingMapswithBPCones ...................................... 293 5 SetRelations ................................................................. 298 References ......................................................................... 301 AnOverviewonSingularNonlinearEllipticBoundaryValueProblems.. 305 FrancescaFaraciandGeorgeSmyrlis 1 Introduction .................................................................. 305 2 Preliminaries ................................................................. 313 3 ThreeSolutions .............................................................. 314 4 MultipleSolutions ........................................................... 326 References ......................................................................... 333 ThePilgerschritt(Liedl)TransformonManifolds........................... 335 WolfgangFörg-Rob 1 Introduction:TheMainIdea................................................. 335 2 ThePilgerschrittTransformonGroups..................................... 336 Contents xi 3 ThePilgerschrittTransformonManifolds.................................. 337 4 Summary ..................................................................... 353 References ......................................................................... 353 OnSomeMathematicalModelsArisinginLubricationTheory............ 355 D.GoelevenandR.Oujja 1 Introduction .................................................................. 355 2 ReynoldsFreeBoundaryProblem .......................................... 357 2.1 IterativeAlgorithm................................................... 359 2.2 AnAdaptiveFiniteElementMethod................................ 361 2.3 NumericalResults.................................................... 364 3 Elrod-AdamsFreeBoundaryProblem...................................... 368 3.1 AOne-DimensionalProblem........................................ 369 3.2 ApproximationoftheElrod-AdamsProblem ...................... 371 3.3 Elasto-HydrodynamicProblem...................................... 374 4 TheEvolutionFreeBoundaryProblem..................................... 377 4.1 Existence,UniquenessandContinuityoftheSolution............. 379 4.2 ASemi-DiscretisedEulerScheme .................................. 381 References ......................................................................... 383 OntheSpectrumofaNonlinearTwoParameterMatrixEigenvalue Problem ........................................................................... 387 MichaelGil’ 1 IntroductionandStatementoftheMainResult ............................ 387 2 ProofofTheorem1.......................................................... 390 3 MatriceswithJointSchurBasis............................................. 392 4 BoundsViaDeterminants ................................................... 394 5 PerturbationofProblem(1.1),(1.2)......................................... 395 6 GerschgorinTypeBoundsforSpectra...................................... 397 7 SharpnessofTheorem1..................................................... 400 8 Conclusion ................................................................... 401 References ......................................................................... 402 OnthePropertiesofaNonlocalNonlinearSchrödingerModeland ItsSolitonSolutions.............................................................. 403 TheodorosP.HorikisandDimitriosJ.Frantzeskakis 1 Introduction .................................................................. 403 2 The1DScalarNonlocalSystem ............................................ 406 2.1 ModulationInstabilityandBrightSolitons ......................... 406 2.2 DarkandAnti-DarkSolitons ........................................ 409 3 The1DVectorNonlocalSystem............................................ 413 3.1 VanishingBoundaryConditions..................................... 418 3.2 Non-vanishingBoundaryConditions ............................... 419 3.3 VanishingandNon-vanishingBoundaryConditions............... 423 4 TheFully3DScalarNonlocalSystem...................................... 426 4.1 TheBoussinesqEquation............................................ 429 4.2 Kadomtsev-Petviashvilli-TypeEquations........................... 431

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.