Springer Optimization and Its Applications Volume134 ManagingEditor PanosM.Pardalos(UniversityofFlorida) Editor–CombinatorialOptimization Ding-ZhuDu(UniversityofTexasatDallas) AdvisoryBoards J.Birge(UniversityofChicago) C.A.Floudas(TexasA&MUniversity) F.Giannessi(UniversityofPisa) H.D.Sherali(VirginiaPolytechnicandStateUniversity) T.Terlaky(LehighUniversity) Y.Ye(StanfordUniversity) AimsandScope Optimizationhasbeenexpandinginalldirectionsatanastonishingrateduringthe lastfewdecades.Newalgorithmicandtheoreticaltechniqueshavebeendeveloped, thediffusionintootherdisciplineshasproceededatarapidpace,andourknowledge ofallaspectsofthefieldhasgrownevenmoreprofound.Atthesametime,oneofthe most striking trends in optimization is the constantly increasing emphasis on the interdisciplinarynatureofthefield.Optimizationhasbeenabasictoolinallareasof appliedmathematics,engineering,medicine,economicsandothersciences. The series Springer Optimization and Its Applications aims to publish state- of-the-art expository works (monographs, contributed volumes, textbooks) that focusonalgorithmsforsolvingoptimizationproblemsandalsostudyapplications involvingsuchproblems.Someofthetopicscoveredincludenonlinearoptimization (convex and nonconvex), network flow problems, stochastic optimization, optimal control, discrete optimization, multi-objective programming, description of soft- warepackages,approximationtechniquesandheuristicapproaches. Moreinformationaboutthisseriesathttp://www.springer.com/series/7393 Themistocles M. Rassias Editor Applications of Nonlinear Analysis 123 Editor ThemistoclesM.Rassias DepartmentofMathematics NationalTechnicalUniversityofAthens Athens,Greece ISSN1931-6828 ISSN1931-6836 (electronic) SpringerOptimizationandItsApplications ISBN978-3-319-89814-8 ISBN978-3-319-89815-5 (eBook) https://doi.org/10.1007/978-3-319-89815-5 LibraryofCongressControlNumber:2018946611 MathematicsSubjectClassification:26-XX,28-XX,30-XX,32-XX,34-XX,35-XX,37-XX,39-XX, 41-XX,43-XX,45-XX,46-XX,47-XX,49-XX,52-XX,53-XX,54-XX,57-XX,58-XX,65-XX ©SpringerInternationalPublishingAG,partofSpringerNature2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAGpart ofSpringerNature. Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface TheApplicationsofNonlinearAnalysispresentssomeclassicalandnewresultsin importantsubjectsofnonlinearanalysisanditsapplications. The contributing papers have been written by experts from the international mathematical community. These papers deepen our understanding of some of the mostessentialresearchproblemsandtheoriesofnonlinearnature. Efforthasbeenmadeforthepresentationoftheconcepts,theories,andmethods toreachwidereadership. I would like to express my thanks to all the scientists who contributed to the preparationofthisvolume.Iwouldalsoliketoacknowledgethesuperbassistance ofthestaffofSpringerforthepublicationofthisbook. Athens,Greece ThemistoclesM.Rassias v Contents NewApplicationsofγ-Quasiconvexity ........................................ 1 ShoshanaAbramovich 1 Introduction .................................................................. 1 2 JensenandSlater-Pecˇaric´ TypeInequalitiesforN-quasiconvex Functions..................................................................... 3 2.1 Jensen and Slater-Pecˇaric´ Type Inequalities for N-quasiconvexFunctionswithNon-negativeCoefficients......... 3 2.2 JensenandSlater-Pecˇaric´ TypeInequalitiesforSteffensen’s Coefficients........................................................... 5 3 HardyTypeInequalitiesforγ-QuasiconvexFunctions.................... 9 4 γ-QuasiconvexityandNewHölderTypeInequalities ..................... 10 5 MinkowskiTypeInequalitiesUsing1-Quasiconvexity.................... 13 6 Boundsof“Jensen’sGap”forN-quasiconvexFunctions.................. 15 6.1 BoundsforDifferenceBetweenTwo“Jensen’sGaps”for N-quasiconvexFunctions............................................ 15 6.2 JensenGapandTaylorPowerSeries................................ 18 References ......................................................................... 19 CriteriaforConvergenceofIteratesinaCompression-Expansion FixedPointTheoremofFunctionalType ..................................... 21 RichardI.Avery,DouglasR.Anderson,andJohnnyHenderson 1 Introduction .................................................................. 21 2 Preliminaries ................................................................. 22 3 Application................................................................... 27 References ......................................................................... 35 OnLagrangianDualityinInfiniteDimensionandItsApplications ....... 37 AntonioCausa,GiandomenicoMastroeni,andFabioRaciti 1 Introduction .................................................................. 37 2 LagrangianDualityinaClassicalFramework.............................. 38 3 ACharacterizationofStrongDualityinInfiniteDimension............... 46 vii viii Contents 4 ApplicationtoGeneralizedNashEquilibriumProblemsinInfinite DimensionalSpaces ......................................................... 51 4.1 TheSettingoftheGame............................................. 51 4.2 LagrangeMultipliersRule........................................... 53 4.3 TheRoleofAssumptionS........................................... 55 5 ConclusionandFurtherResearchDirections............................... 58 Appendix........................................................................... 58 References ......................................................................... 59 Stability Analysis of the Inverse Problem of Parameter IdentificationinMixedVariationalProblems................................. 61 M.Cho,A.A.Khan,T.Malysheva,M.Sama,andL.White 1 Introduction .................................................................. 61 2 ProblemFormulationandPreliminaryResults............................. 63 3 OptimizationFormulations.................................................. 68 4 AsymptoticStabilityoftheMOLSApproach.............................. 72 5 LocalStabilityEstimates.................................................... 76 5.1 StabilityoftheOutputLeast-SquaresApproach.................... 77 5.2 StabilityoftheModifiedOutputLeast-SquaresApproach......... 84 5.3 StabilityoftheEnergyOutputLeast-SquaresApproach........... 87 6 ComputationalResults....................................................... 90 6.1 ElasticityImagingInverseProblem ................................. 91 6.2 IdentificationinStokesEquations................................... 92 6.3 PerformanceAnalysis................................................ 94 6.4 ErrorAnalysisforDecreasingλ..................................... 94 7 ConcludingRemarks......................................................... 96 Appendix:ToolsfromStabilityandOptimizationTheory ...................... 97 References ......................................................................... 99 NonlinearDualityinBanachSpacesandApplicationstoFinance andElasticity ..................................................................... 101 G.Colajanni,PatriziaDaniele,SofiaGiuffrè,andAntoninoMaugeri 1 TheStrongDualityintheInfinite-DimensionalSetting ................... 101 1.1 AssumptionS......................................................... 102 (cid:2) 1.2 AssumptionS ........................................................ 104 1.3 StrongDualityintheCaseofNonlinearEqualityConstrains...... 104 1.4 NES(NonEmptySubdifferentialCondition)....................... 108 2 ApplicationstotheGeneralFinancialEquilibriumProblem .............. 109 2.1 PresentationoftheModel............................................ 109 2.2 TheDualityfortheFinancialEquilibriumProblem................ 115 2.3 TheViewpointsoftheSectorandoftheSystem ................... 117 2.4 TheContagionProblem.............................................. 119 2.5 AnExampleofaMarkowitz-TypeRiskMeasure .................. 121 3 ApplicationstotheElastic-PlasticTorsionProblem ....................... 121 3.1 PresentationoftheProblem.......................................... 121 3.2 TheElastic-PlasticTorsionProblemforLinearOperators......... 123 Contents ix 3.3 The Elastic-Plastic Torsion Problem for Nonlinear MonotoneOperators ................................................. 128 3.4 VonMisesFunctions................................................. 133 3.5 RadialSolutions...................................................... 134 References ......................................................................... 137 SelectivePrioritiesinProcessingofBigData................................. 141 NicholasJ.Daras 1 Introduction .................................................................. 141 2 RationalChoiceofDataSets ............................................... 142 2.1 ProgramsofDataSelections......................................... 142 2.2 DataSelectionPreferences........................................... 143 2.3 WeightedDataSystemsandDataAmountProcessing Capacities............................................................. 146 2.4 Topology of the Space of Data Selection Preferences: NeighboringSelectionPreferences.................................. 147 2.5 TheLowerHemicontinuityfortheRationalChoiceofData Amount ............................................................... 149 2.6 MeanRationalDataAmountChoice................................ 151 3 ContrastingSelectivePriorities ............................................. 162 3.1 Introduction........................................................... 162 3.2 MainDefinitions ..................................................... 163 3.3 ContrastCoreandContrastEquilibriums .......................... 165 3.4 DeterminatenessofDataEquilibriumVectors...................... 170 References ......................................................................... 173 GeneralInertialMannAlgorithmsandTheirConvergenceAnalysis forNonexpansiveMappings .................................................... 175 Qiao-LiDong,YeolJeCho,and ThemistoclesM.Rassias 1 Introduction .................................................................. 175 2 Preliminaries ................................................................. 178 3 TheGeneralInertialMannAlgorithms..................................... 179 3.1 RevisittheAcceleratedMannAlgorithm ........................... 179 3.2 Algorithms............................................................ 181 4 ConvergenceAnalysis....................................................... 182 5 Applications.................................................................. 186 6 NumericalExamplesandConclusions...................................... 188 References ......................................................................... 189 ReversesofJensen’sIntegralInequalityandApplications:ASurvey ofRecentResults................................................................. 193 SilvestruSeverDragomir 1 Introduction .................................................................. 193 2 ARefinementandaDivided-DifferenceReverse.......................... 199 2.1 GeneralResults....................................................... 199 2.2 ApplicationsfortheHölderInequality.............................. 206 2.3 Applicationsforf-Divergence...................................... 208 x Contents 3 ReverseInequalitiesinTermsofFirstDerivative .......................... 213 3.1 GeneralResults....................................................... 213 3.2 ApplicationsfortheHölderInequality.............................. 220 3.3 Applicationsforf-Divergence...................................... 223 4 MoreReverseInequalities................................................... 225 4.1 GeneralResults....................................................... 225 4.2 ApplicationsfortheHölderInequality.............................. 232 4.3 Applicationsforf-Divergence...................................... 237 5 SuperadditivityandMonotonicityProperties............................... 239 5.1 GeneralResults....................................................... 239 5.2 ApplicationsfortheHölderInequality.............................. 245 5.3 Applicationsforf-DivergenceMeasures........................... 246 6 InequalitiesforSelfadjointOperators....................................... 247 6.1 PreliminaryFacts..................................................... 247 6.2 ReversesforFunctionsofOperators ................................ 249 6.3 SomeExamples ...................................................... 256 References ......................................................................... 261 OrderingStructuresandTheirApplications ................................. 265 GabrieleEichfelderandMariaPilecka 1 Introduction .................................................................. 265 2 Pre-andPartialOrders....................................................... 266 3 OrderingStructuresinLinearSpaces....................................... 268 3.1 Pre-orders,PartialOrdersandCones................................ 268 3.2 Bishop-PhelpsCones................................................. 272 3.3 PolyhedralCones..................................................... 278 3.4 OrderingSets......................................................... 280 4 VariableOrderingStructures................................................ 283 4.1 IntroductiontoVariableOrderingStructures ....................... 283 4.2 BasicPropertiesofVariableOrderingStructures................... 288 4.3 OrderingMapswithBPCones ...................................... 293 5 SetRelations ................................................................. 298 References ......................................................................... 301 AnOverviewonSingularNonlinearEllipticBoundaryValueProblems.. 305 FrancescaFaraciandGeorgeSmyrlis 1 Introduction .................................................................. 305 2 Preliminaries ................................................................. 313 3 ThreeSolutions .............................................................. 314 4 MultipleSolutions ........................................................... 326 References ......................................................................... 333 ThePilgerschritt(Liedl)TransformonManifolds........................... 335 WolfgangFörg-Rob 1 Introduction:TheMainIdea................................................. 335 2 ThePilgerschrittTransformonGroups..................................... 336 Contents xi 3 ThePilgerschrittTransformonManifolds.................................. 337 4 Summary ..................................................................... 353 References ......................................................................... 353 OnSomeMathematicalModelsArisinginLubricationTheory............ 355 D.GoelevenandR.Oujja 1 Introduction .................................................................. 355 2 ReynoldsFreeBoundaryProblem .......................................... 357 2.1 IterativeAlgorithm................................................... 359 2.2 AnAdaptiveFiniteElementMethod................................ 361 2.3 NumericalResults.................................................... 364 3 Elrod-AdamsFreeBoundaryProblem...................................... 368 3.1 AOne-DimensionalProblem........................................ 369 3.2 ApproximationoftheElrod-AdamsProblem ...................... 371 3.3 Elasto-HydrodynamicProblem...................................... 374 4 TheEvolutionFreeBoundaryProblem..................................... 377 4.1 Existence,UniquenessandContinuityoftheSolution............. 379 4.2 ASemi-DiscretisedEulerScheme .................................. 381 References ......................................................................... 383 OntheSpectrumofaNonlinearTwoParameterMatrixEigenvalue Problem ........................................................................... 387 MichaelGil’ 1 IntroductionandStatementoftheMainResult ............................ 387 2 ProofofTheorem1.......................................................... 390 3 MatriceswithJointSchurBasis............................................. 392 4 BoundsViaDeterminants ................................................... 394 5 PerturbationofProblem(1.1),(1.2)......................................... 395 6 GerschgorinTypeBoundsforSpectra...................................... 397 7 SharpnessofTheorem1..................................................... 400 8 Conclusion ................................................................... 401 References ......................................................................... 402 OnthePropertiesofaNonlocalNonlinearSchrödingerModeland ItsSolitonSolutions.............................................................. 403 TheodorosP.HorikisandDimitriosJ.Frantzeskakis 1 Introduction .................................................................. 403 2 The1DScalarNonlocalSystem ............................................ 406 2.1 ModulationInstabilityandBrightSolitons ......................... 406 2.2 DarkandAnti-DarkSolitons ........................................ 409 3 The1DVectorNonlocalSystem............................................ 413 3.1 VanishingBoundaryConditions..................................... 418 3.2 Non-vanishingBoundaryConditions ............................... 419 3.3 VanishingandNon-vanishingBoundaryConditions............... 423 4 TheFully3DScalarNonlocalSystem...................................... 426 4.1 TheBoussinesqEquation............................................ 429 4.2 Kadomtsev-Petviashvilli-TypeEquations........................... 431