Applications of Matrix-Product States in Condensed Matter and AMO Fabian Heidrich-Meisner Ludwig-Maximilians-University Munich Tensor16, MPIPKS Dresden, Nov. 4, 2016 Outline 1) Brief recap: MPS methods and entanglement H = E | i | i 2) Overview over applications Schmidt decomposition m r 3) Entanglement scaling in ⌧ = s ↵ ↵ time-dependent simulations ↵ A B ! | i | i | i ↵ X 4) Nonequilibrium dynamics in optical Entanglement lattices S = tr[⇢ ln⇢ ] vN A A 5) Transport in nano-structures � Hilbert-space 6) Finite temperatures 7) Electron-phonon problems 8) Outlook sub-space of m-dimensional MPS Recap: Basics of MPS methods “Structure” of wave-functions Local degrees of freedom: � = ; site i i | i | "i | #i = c � , � , . . . , � � ,� ,� ,...,� 1 2 L | i 1 2 3 L | i � ,...,� 1 L X c Non-local object, � ,� ,� ,...,� 1 2 3 L 2L coefficients tensor of rank L � � 1 L � � 2 . . . L 1 � Use the methodology of SVD to obtain a local structure! Key idea of density matrix renormalization group Part A: “System”, length L Part B: “System”, length L A B N ,N m r A B ⌧ = i j = s ↵ ↵ ij A B m ↵ A B | i | i ⌦ | i ! | i ⇡ | i | i | i i,j ↵ X X Keep only m ~ 103 states with largest singular values 2 ⇢ = s ↵ ↵ → L ~ 102 ... 103 A ↵| iAAh | ↵ X → Ground states & time evolution Hilbert-space → T>0 in 1D Sub-space of → Highly accurate matrix-product states: Small entanglement White, Phys. Rev. Lett. 69, 2863 (1992) Schollwöck, Annals of Physics 326, 96 (2011) Matrix product states Matrix dimensions (d=2) DMRG: Approximate wave-functions with finite-dimensional MPS Minimize energy by variation over single A-matrices Hilbert-space � i 1 A L i 1 : (m d ) � � � ⇥ sub-space of m-dimensional MPS Connection to entanglement Reduced DM: 2 ⇢ = s ↵ ↵ A ↵ AA | i h | ↵ X Von-Neumann entropy: 2 2 S = tr[⇢ log ⇢ ] = s log s vN A 2 A ↵ 2 ↵ � � ↵ X Product state, no entanglement = i j r = 1 : S = 0 A B vN | i | i ⌦ | i Worst case: Flat spectrum Estimate of “costs: 1 2 s = const = S (L) ↵ m e vN m ! / Area laws Estimate of “costs”: 2 2 S = tr[⇢ log ⇢ ] = s log s vN A 2 A ↵ 2 ↵ � � ↵ S (L) m e vN X ! / Entanglement scaling for most states Desired: costs should not scale exponentially in L! D S L volume vN ⇠ ⇠ B A L Area laws Estimate of “costs”: 2 2 S = tr[⇢ log ⇢ ] = s log s vN A 2 A ↵ 2 ↵ � � ↵ S (L) m e vN X ! / Area law: Ground-states of short-ranged, gapped Hamiltonians in D dimensions scales Desired: costs should with surface area not volume not scale exponentially in L! D 1 S L B vN � ⇠ 1D : m const. L > ⇠ ⇠ A L z z S S exp( i j /⇠) i j h i / �| � | L 2D : m e ⇠ Review: Eisert, Cramer, Plenio Rev. Mod. Phys. 82, 277 (2010) How to beat the area law in 2D: See P. Corboz’ lecture Overview over applications
Description: